![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl11 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpl11 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1222 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | |
2 | 1 | adantr 472 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: pythagtriplem4 15647 tsmsxp 22080 brbtwn2 25905 ax5seg 25938 3vfriswmgr 27353 br8 31874 nolt02o 32072 btwndiff 32361 ifscgr 32378 seglecgr12im 32444 lkrshp 34812 cvlcvr1 35046 atbtwn 35152 3dimlem3 35167 3dimlem3OLDN 35168 1cvratex 35179 llnmlplnN 35245 4atlem3 35302 4atlem3a 35303 4atlem11 35315 4atlem12 35318 lnatexN 35485 cdlemb 35500 paddasslem4 35529 paddasslem10 35535 pmodlem1 35552 llnexchb2lem 35574 llnexchb2 35575 arglem1N 35897 cdlemd4 35908 cdlemd9 35913 cdlemd 35914 cdleme16 35992 cdleme20 36031 cdleme21i 36042 cdleme21k 36045 cdleme27N 36076 cdleme28c 36079 cdlemefrs29bpre0 36103 cdlemefrs29clN 36106 cdlemefrs32fva 36107 cdleme41sn3a 36140 cdleme32fva 36144 cdleme40n 36175 cdlemg12e 36354 cdlemg15a 36362 cdlemg15 36363 cdlemg16ALTN 36365 cdlemg16z 36366 cdlemg20 36392 cdlemg22 36394 cdlemg29 36412 cdlemg38 36422 cdlemk33N 36616 cdlemk56 36678 dihord11b 36930 dihord2pre 36933 dihord4 36966 fourierdlem77 40820 |
Copyright terms: Public domain | W3C validator |