![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rr | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 813 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant3 1130 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: omeu 7836 ntrivcvgmul 14853 tsmsxp 22179 tgqioo 22824 ovolunlem2 23486 plyadd 24192 plymul 24193 coeeu 24200 tghilberti2 25753 cvmlift2lem10 31622 nosupbnd1lem2 32182 btwnconn1lem1 32521 lplnexllnN 35371 2llnjN 35374 4atlem12b 35418 lplncvrlvol2 35422 lncmp 35590 cdlema2N 35599 cdleme11a 36068 cdleme24 36160 cdleme28 36181 cdlemefr29bpre0N 36214 cdlemefr29clN 36215 cdlemefr32fvaN 36217 cdlemefr32fva1 36218 cdlemefs29bpre0N 36224 cdlemefs29bpre1N 36225 cdlemefs29cpre1N 36226 cdlemefs29clN 36227 cdlemefs32fvaN 36230 cdlemefs32fva1 36231 cdleme36m 36269 cdleme17d3 36304 cdlemg36 36522 cdlemj3 36631 cdlemkid1 36730 cdlemk19ylem 36738 cdlemk19xlem 36750 dihlsscpre 37043 dihord4 37067 dihmeetlem1N 37099 dihatlat 37143 jm2.27 38095 |
Copyright terms: Public domain | W3C validator |