![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3rl | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3rl | ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 811 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜑) | |
2 | 1 | 3ad2ant3 1129 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓))) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: omeu 7826 hashbclem 13420 ntrivcvgmul 14825 tsmsxp 22151 tgqioo 22796 ovolunlem2 23458 plyadd 24164 plymul 24165 coeeu 24172 tghilberti2 25724 cvmlift2lem10 31593 nosupbnd1lem2 32153 btwnconn1lem1 32492 btwnconn1lem2 32493 btwnconn1lem12 32503 lplnexllnN 35345 2llnjN 35348 4atlem12b 35392 lplncvrlvol2 35396 lncmp 35564 cdlema2N 35573 cdlemc2 35974 cdleme11a 36042 cdleme22eALTN 36127 cdleme24 36134 cdleme27a 36149 cdleme27N 36151 cdleme28 36155 cdlemefs29bpre0N 36198 cdlemefs29bpre1N 36199 cdlemefs29cpre1N 36200 cdlemefs29clN 36201 cdlemefs32fvaN 36204 cdlemefs32fva1 36205 cdleme36m 36243 cdleme39a 36247 cdleme17d3 36278 cdleme50trn2 36333 cdlemg36 36496 cdlemj3 36605 cdlemkfid1N 36703 cdlemkid1 36704 cdlemk19ylem 36712 cdlemk19xlem 36724 dihlsscpre 37017 dihord4 37041 dihatlat 37117 mapdh9a 37573 jm2.27 38069 |
Copyright terms: Public domain | W3C validator |