![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3r2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3r2 | ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr2 1236 | . 2 ⊢ ((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
2 | 1 | 3ad2ant3 1130 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: nllyrest 21489 cdlemblem 35580 cdleme21 36125 cdleme22b 36129 cdleme40m 36255 cdlemg34 36500 cdlemk5u 36649 cdlemk6u 36650 cdlemk21N 36661 cdlemk20 36662 cdlemk26b-3 36693 cdlemk26-3 36694 cdlemk28-3 36696 cdlemky 36714 cdlemk11t 36734 cdlemkyyN 36750 stoweidlem56 40774 |
Copyright terms: Public domain | W3C validator |