![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp3lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp3lr | ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 809 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant3 1130 | 1 ⊢ ((𝜃 ∧ 𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: f1oiso2 6765 omeu 7834 ntrivcvgmul 14833 tsmsxp 22159 tgqioo 22804 ovolunlem2 23466 plyadd 24172 plymul 24173 coeeu 24180 tghilberti2 25732 nosupbnd1lem2 32161 btwnconn1lem2 32501 btwnconn1lem3 32502 btwnconn1lem4 32503 athgt 35245 2llnjN 35356 4atlem12b 35400 lncmp 35572 cdlema2N 35581 cdleme21ct 36119 cdleme24 36142 cdleme27a 36157 cdleme28 36163 cdleme42b 36268 cdlemf 36353 dihlsscpre 37025 dihord4 37049 dihord5apre 37053 pellex 37901 jm2.27 38077 |
Copyright terms: Public domain | W3C validator |