Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp333 Structured version   Visualization version   GIF version

Theorem simp333 1412
 Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp333 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simp333
StepHypRef Expression
1 simp33 1253 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜒)
213ad2ant3 1129 1 ((𝜂𝜁 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒))) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073 This theorem is referenced by:  ivthALT  32667  dalemclrju  35444  dath2  35545  cdlema1N  35599  cdleme26eALTN  36170  cdlemk7u  36679  cdlemk11u  36680  cdlemk12u  36681  cdlemk22  36702  cdlemk23-3  36711  cdlemk33N  36718  cdlemk11ta  36738  cdlemk11tc  36754  cdlemk54  36767
 Copyright terms: Public domain W3C validator