MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp323 Structured version   Visualization version   GIF version

Theorem simp323 1409
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp323 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)

Proof of Theorem simp323
StepHypRef Expression
1 simp23 1250 . 2 ((𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏) → 𝜒)
213ad2ant3 1129 1 ((𝜂𝜁 ∧ (𝜃 ∧ (𝜑𝜓𝜒) ∧ 𝜏)) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073
This theorem is referenced by:  dalemrot  35466  dath2  35546  cdleme18d  36105  cdleme20i  36127  cdleme20j  36128  cdleme20l2  36131  cdleme20l  36132  cdleme20m  36133  cdleme20  36134  cdleme21j  36146  cdleme22eALTN  36155  cdleme26eALTN  36171  cdlemk16a  36666  cdlemk12u-2N  36700  cdlemk21-2N  36701  cdlemk22  36703  cdlemk31  36706  cdlemk11ta  36739
  Copyright terms: Public domain W3C validator