![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp31r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31r | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1239 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant3 1128 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: ps-2c 35329 cdlema1N 35592 cdlemednpq 36101 cdleme19e 36109 cdleme20h 36118 cdleme20j 36120 cdleme20l2 36123 cdleme20m 36125 cdleme22a 36142 cdleme22cN 36144 cdleme22f2 36149 cdleme26f2ALTN 36166 cdleme37m 36264 cdlemg12f 36450 cdlemg12g 36451 cdlemg12 36452 cdlemg28a 36495 cdlemg29 36507 cdlemg33a 36508 cdlemg36 36516 cdlemk16a 36658 cdlemk21-2N 36693 cdlemk54 36760 dihord10 37026 |
Copyright terms: Public domain | W3C validator |