![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp31l | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp31l | ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1l 1239 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | 1 | 3ad2ant3 1129 | 1 ⊢ ((𝜏 ∧ 𝜂 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃)) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1073 |
This theorem is referenced by: ps-2c 35336 cdlema1N 35599 trlval3 35996 cdleme12 36080 cdlemednpq 36108 cdleme19d 36115 cdleme19e 36116 cdleme20f 36123 cdleme20h 36125 cdleme20l2 36130 cdleme20l 36131 cdleme20m 36132 cdleme21j 36145 cdleme22a 36149 cdleme22cN 36151 cdleme22f2 36156 cdleme32b 36251 cdlemg12f 36457 cdlemg12g 36458 cdlemg12 36459 cdlemg28a 36502 cdlemg31b0N 36503 cdlemg29 36514 cdlemg33a 36515 cdlemg36 36523 cdlemg42 36538 cdlemk16a 36665 cdlemk21-2N 36700 cdlemk32 36706 cdlemkid2 36733 cdlemk54 36767 cdlemk55a 36768 dihord10 37033 |
Copyright terms: Public domain | W3C validator |