![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2lr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2lr | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 744 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜓) | |
2 | 1 | 3ad2ant2 1127 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: tfrlem5 7628 omeu 7818 4sqlem18 15872 vdwlem10 15900 mvrf1 19639 mdetuni0 20644 mdetmul 20646 tsmsxp 22177 ax5seglem3 26031 btwnconn1lem1 32525 btwnconn1lem3 32527 btwnconn1lem4 32528 btwnconn1lem5 32529 btwnconn1lem6 32530 btwnconn1lem7 32531 linethru 32591 lshpkrlem6 34917 athgt 35257 2llnjN 35368 dalaw 35687 cdlemb2 35842 4atexlemex6 35875 cdleme01N 36023 cdleme0ex2N 36026 cdleme7aa 36044 cdleme7e 36049 cdlemg33c0 36504 dihmeetlem3N 37108 pellex 37918 expmordi 38031 |
Copyright terms: Public domain | W3C validator |