![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp2ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp2ll | ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 807 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant2 1129 | 1 ⊢ ((𝜃 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: tfrlem5 7646 omeu 7836 4sqlem18 15888 vdwlem10 15916 0catg 16569 mvrf1 19647 mdetuni0 20649 mdetmul 20651 tsmsxp 22179 ax5seglem3 26031 btwnconn1lem1 32521 btwnconn1lem2 32522 btwnconn1lem3 32523 btwnconn1lem12 32532 btwnconn1lem13 32533 lshpkrlem6 34923 athgt 35263 2llnjN 35374 dalaw 35693 lhpmcvr4N 35833 cdlemb2 35848 4atexlemex6 35881 cdlemd7 36012 cdleme01N 36029 cdleme02N 36030 cdleme0ex1N 36031 cdleme0ex2N 36032 cdleme7aa 36050 cdleme7c 36053 cdleme7d 36054 cdleme7e 36055 cdleme7ga 36056 cdleme7 36057 cdleme11a 36068 cdleme20k 36127 cdleme27cl 36174 cdleme42e 36287 cdleme42h 36290 cdleme42i 36291 cdlemf 36371 cdlemg2kq 36410 cdlemg2m 36412 cdlemg8a 36435 cdlemg11aq 36446 cdlemg10c 36447 cdlemg11b 36450 cdlemg17a 36469 cdlemg31b0N 36502 cdlemg31c 36507 cdlemg33c0 36510 cdlemg41 36526 cdlemh2 36624 cdlemn9 37014 dihglbcpreN 37109 dihmeetlem3N 37114 dihmeetlem13N 37128 pellex 37919 expmordi 38032 |
Copyright terms: Public domain | W3C validator |