![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp23r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp23r | ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3r 1243 | . 2 ⊢ ((𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant2 1127 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ 𝜃 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: ax5seglem6 26034 lshpkrlem5 34916 lplnexllnN 35365 4atexlemutvt 35855 cdlemc5 35997 cdlemd2 36001 cdleme0moN 36027 cdleme3h 36037 cdleme5 36042 cdleme9 36055 cdleme11l 36071 cdleme14 36075 cdleme15c 36078 cdleme16b 36081 cdleme16d 36083 cdleme16e 36084 cdlemednpq 36101 cdleme20bN 36112 cdleme20j 36120 cdleme20l2 36123 cdleme20l 36124 cdleme22cN 36144 cdleme22d 36145 cdleme22e 36146 cdleme22f 36148 cdleme26fALTN 36164 cdleme26f 36165 cdleme26f2ALTN 36166 cdleme26f2 36167 cdleme27a 36169 cdleme32b 36244 cdleme32d 36246 cdleme32f 36248 cdleme39n 36268 cdleme40n 36270 cdlemg2fv2 36402 cdlemg17h 36470 cdlemg27b 36498 cdlemg28b 36505 cdlemg28 36506 cdlemg29 36507 cdlemg33a 36508 cdlemg33d 36511 cdlemk7u-2N 36690 cdlemk11u-2N 36691 cdlemk12u-2N 36692 cdlemk26-3 36708 cdlemk27-3 36709 cdlemkfid3N 36727 cdlemn11c 37012 |
Copyright terms: Public domain | W3C validator |