![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp22r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp22r | ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2r 1243 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1129 | 1 ⊢ ((𝜏 ∧ (𝜒 ∧ (𝜑 ∧ 𝜓) ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: ax5seglem6 26034 segconeu 32445 3atlem2 35291 lplnexllnN 35371 lplncvrlvol2 35422 4atex 35883 cdleme3g 36042 cdleme3h 36043 cdleme11h 36074 cdleme20bN 36118 cdleme20c 36119 cdleme20f 36122 cdleme20g 36123 cdleme20j 36126 cdleme20l2 36129 cdleme20l 36130 cdleme21ct 36137 cdleme26e 36167 cdleme43fsv1snlem 36228 cdleme39n 36274 cdleme40m 36275 cdleme42k 36292 cdlemg6c 36428 cdlemg31d 36508 cdlemg33a 36514 cdlemg33c 36516 cdlemg33d 36517 cdlemg33e 36518 cdlemg33 36519 cdlemh 36625 cdlemk7u-2N 36696 cdlemk11u-2N 36697 cdlemk12u-2N 36698 cdlemk20-2N 36700 cdlemk28-3 36716 cdlemk33N 36717 cdlemk34 36718 cdlemk39 36724 cdlemkyyN 36770 |
Copyright terms: Public domain | W3C validator |