![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp21r | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp21r | ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1r 1239 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant2 1127 | 1 ⊢ ((𝜏 ∧ ((𝜑 ∧ 𝜓) ∧ 𝜒 ∧ 𝜃) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1072 |
This theorem is referenced by: modexp 13205 segconeu 32449 4atlem10 35407 lplncvrlvol2 35416 4atex 35877 4atex2-0cOLDN 35881 cdleme0moN 36027 cdleme16e 36084 cdleme17d1 36091 cdleme18d 36097 cdleme19d 36108 cdleme20f 36116 cdleme20g 36117 cdleme21ct 36131 cdleme22aa 36141 cdleme22cN 36144 cdleme22d 36145 cdleme22e 36146 cdleme22eALTN 36147 cdleme26e 36161 cdleme32e 36247 cdleme32f 36248 cdlemg4 36419 cdlemg18d 36483 cdlemg18 36484 cdlemg19a 36485 cdlemg19 36486 cdlemg21 36488 cdlemg33b0 36503 cdlemk5 36638 cdlemk6 36639 cdlemk7 36650 cdlemk11 36651 cdlemk12 36652 cdlemk21N 36675 cdlemk20 36676 cdlemk28-3 36710 cdlemk34 36712 cdlemkfid3N 36727 cdlemk55u1 36767 |
Copyright terms: Public domain | W3C validator |