![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rr | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rr | ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprr 811 | . 2 ⊢ ((𝜒 ∧ (𝜑 ∧ 𝜓)) → 𝜓) | |
2 | 1 | 3ad2ant1 1102 | 1 ⊢ (((𝜒 ∧ (𝜑 ∧ 𝜓)) ∧ 𝜃 ∧ 𝜏) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: f1imass 6561 smo11 7506 zsupss 11815 lsmcv 19189 lspsolvlem 19190 mat2pmatghm 20583 mat2pmatmul 20584 nrmr0reg 21600 plyadd 24018 plymul 24019 coeeu 24026 ax5seglem6 25859 archiabl 29880 mdetpmtr1 30017 sseqval 30578 wsuclem 31895 btwnconn1lem1 32319 btwnconn1lem2 32320 btwnconn1lem12 32330 lshpsmreu 34714 1cvratlt 35078 llnle 35122 lvolex3N 35142 lnjatN 35384 lncvrat 35386 lncmp 35387 cdlemd6 35808 cdlemk19ylem 36535 pellex 37716 limcperiod 40178 |
Copyright terms: Public domain | W3C validator |