![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1ll | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1ll | ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 750 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜑) | |
2 | 1 | 3ad2ant1 1127 | 1 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1073 |
This theorem is referenced by: lspsolvlem 19356 1marepvsma1 20607 mdetunilem8 20643 madutpos 20666 ax5seg 26039 rabfodom 29682 measinblem 30623 btwnconn1lem2 32532 btwnconn1lem13 32543 athgt 35264 llnle 35326 lplnle 35348 lhpexle1 35816 lhpj1 35830 lhpat3 35854 ltrncnv 35954 cdleme16aN 36068 tendoicl 36605 cdlemk55b 36769 dihatexv 37148 dihglblem6 37150 limccog 40370 icccncfext 40618 stoweidlem31 40765 stoweidlem34 40768 stoweidlem49 40783 stoweidlem57 40791 |
Copyright terms: Public domain | W3C validator |