![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1l2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1l2 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1229 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜓) | |
2 | 1 | 3ad2ant1 1127 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-3an 1073 |
This theorem is referenced by: mapxpen 8282 lsmcv 19355 pmatcollpw2 20803 btwnconn1lem4 32534 linethru 32597 hlrelat3 35220 cvrval3 35221 cvrval4N 35222 2atlt 35247 atbtwnex 35256 1cvratlt 35282 atcvrlln2 35327 atcvrlln 35328 2llnmat 35332 lvolnlelpln 35393 lnjatN 35588 lncmp 35591 cdlemd9 36015 dihord5b 37069 dihmeetALTN 37137 mapdrvallem2 37455 |
Copyright terms: Public domain | W3C validator |