![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1i | Structured version Visualization version GIF version |
Description: Infer a conjunct from a triple conjunction. (Contributed by NM, 19-Apr-2005.) |
Ref | Expression |
---|---|
3simp1i.1 | ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
simp1i | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1i.1 | . 2 ⊢ (𝜑 ∧ 𝜓 ∧ 𝜒) | |
2 | simp1 1131 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: find 7257 hartogslem2 8615 harwdom 8662 divalglem6 15343 structfn 16096 strleun 16194 rmodislmod 19153 birthday 24901 divsqrsumf 24927 emcl 24949 lgslem4 25245 lgscllem 25249 lgsdir2lem2 25271 mulog2sumlem1 25443 siilem2 28037 h2hva 28161 h2hsm 28162 elunop2 29202 wallispilem3 40805 wallispilem4 40806 |
Copyright terms: Public domain | W3C validator |