![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp132 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp132 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp32 1253 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜓) | |
2 | 1 | 3ad2ant1 1128 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: ax5seglem3 26010 3atlem1 35272 3atlem2 35273 3atlem5 35276 2llnjaN 35355 4atlem11b 35397 4atlem12b 35400 lplncvrlvol2 35404 dalemtea 35419 dath2 35526 cdlemblem 35582 dalawlem1 35660 lhpexle3lem 35800 4atexlemex6 35863 cdleme22f2 36137 cdleme22g 36138 cdlemg7aN 36415 cdlemg34 36502 cdlemj1 36611 cdlemk23-3 36692 cdlemk25-3 36694 cdlemk26b-3 36695 |
Copyright terms: Public domain | W3C validator |