![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp131 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp131 | ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp31 1252 | . 2 ⊢ ((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) → 𝜑) | |
2 | 1 | 3ad2ant1 1128 | 1 ⊢ (((𝜃 ∧ 𝜏 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒)) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: ax5seglem3 26031 exatleN 35211 3atlem1 35290 3atlem2 35291 3atlem5 35294 2llnjaN 35373 4atlem11b 35415 4atlem12b 35418 lplncvrlvol2 35422 dalemsea 35436 dath2 35544 cdlemblem 35600 dalawlem1 35678 lhpexle3lem 35818 4atexlemex6 35881 cdleme22f2 36155 cdleme22g 36156 cdlemg7aN 36433 cdlemg34 36520 cdlemj1 36629 cdlemk23-3 36710 cdlemk25-3 36712 cdlemk26b-3 36713 cdleml3N 36786 |
Copyright terms: Public domain | W3C validator |