![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp111 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp111 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp11 1246 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) → 𝜑) | |
2 | 1 | 3ad2ant1 1128 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂 ∧ 𝜁) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1074 |
This theorem is referenced by: tsmsxp 22179 ps-2b 35289 llncvrlpln2 35364 4atlem11b 35415 4atlem12b 35418 lplncvrlvol2 35422 lneq2at 35585 2lnat 35591 cdlemblem 35600 4atexlemex6 35881 cdleme24 36160 cdleme26ee 36168 cdlemg2idN 36404 cdlemg31c 36507 cdlemk26-3 36714 0ellimcdiv 40402 |
Copyright terms: Public domain | W3C validator |