MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp111 Structured version   Visualization version   GIF version

Theorem simp111 1387
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp111 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)

Proof of Theorem simp111
StepHypRef Expression
1 simp11 1246 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
213ad2ant1 1128 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂𝜁) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1074
This theorem is referenced by:  tsmsxp  22179  ps-2b  35289  llncvrlpln2  35364  4atlem11b  35415  4atlem12b  35418  lplncvrlvol2  35422  lneq2at  35585  2lnat  35591  cdlemblem  35600  4atexlemex6  35881  cdleme24  36160  cdleme26ee  36168  cdlemg2idN  36404  cdlemg31c  36507  cdlemk26-3  36714  0ellimcdiv  40402
  Copyright terms: Public domain W3C validator