![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5r | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | 1 | ad4antr 771 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: simp-6rOLD 836 catcocl 16547 catass 16548 monpropd 16598 subccocl 16706 funcco 16732 funcpropd 16761 mhmmnd 17738 pm2mpmhmlem2 20826 neitr 21186 restutopopn 22243 ustuqtop4 22249 utopreg 22257 cfilucfil 22565 psmetutop 22573 dyadmax 23566 tgifscgr 25602 tgcgrxfr 25612 tgbtwnconn1lem3 25668 tgbtwnconn1 25669 legov 25679 legtrd 25683 legso 25693 miriso 25764 perpneq 25808 footex 25812 colperpex 25824 opphllem 25826 midex 25828 opphl 25845 lnopp2hpgb 25854 trgcopyeu 25897 dfcgra2 25920 inaghl 25930 f1otrg 25950 clwlksfclwwlkOLD 27216 2sqmo 29958 omndmul2 30021 psgnfzto1stlem 30159 qtophaus 30212 locfinreflem 30216 cmpcref 30226 pstmxmet 30249 lmxrge0 30307 esumcst 30434 omssubadd 30671 signstfvneq0 30958 afsval 31058 matunitlindflem1 33718 heicant 33757 sstotbnd2 33886 eldioph2b 37828 diophren 37879 pell1234qrdich 37927 iunconnlem2 39670 limcrecl 40364 limclner 40386 icccncfext 40603 ioodvbdlimc1lem2 40650 ioodvbdlimc2lem 40652 stoweidlem60 40780 fourierdlem51 40877 fourierdlem77 40903 fourierdlem103 40929 fourierdlem104 40930 smfaddlem1 41477 smfmullem3 41506 |
Copyright terms: Public domain | W3C validator |