![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5l | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 24-May-2022.) |
Ref | Expression |
---|---|
simp-5l | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | 1 | ad5antr 708 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 |
This theorem is referenced by: simp-6lOLD 769 mhmmnd 17744 neiptopnei 21156 neitx 21630 ustex3sym 22240 restutop 22260 ustuqtop4 22267 utopreg 22275 xrge0tsms 22856 f1otrg 25971 xrge0tsmsd 30119 pstmxmet 30274 esumfsup 30466 esum2dlem 30488 esum2d 30489 omssubadd 30696 eulerpartlemgvv 30772 matunitlindflem2 33732 eldioph2 37844 limcrecl 40373 icccncfext 40612 ioodvbdlimc1lem2 40659 ioodvbdlimc2lem 40661 stoweidlem60 40788 fourierdlem77 40911 fourierdlem80 40914 fourierdlem103 40937 fourierdlem104 40938 etransclem35 40997 |
Copyright terms: Public domain | W3C validator |