Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvtn Structured version   Visualization version   GIF version

Theorem signsvtn 30991
Description: Adding a letter of a different sign as the highest coefficient changes the sign. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
signsvf.e (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
signsvf.0 (𝜑 → (𝐸‘0) ≠ 0)
signsvf.f (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
signsvf.a (𝜑𝐴 ∈ ℝ)
signsvf.n 𝑁 = (♯‘𝐸)
signsvt.b 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
Assertion
Ref Expression
signsvtn ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝑛,𝐴   𝐸,𝑎,𝑏,𝑓,𝑖,𝑗,𝑛   𝑇,𝑎,𝑏,𝑓,𝑗,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐵(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvtn
StepHypRef Expression
1 signsvf.f . . . . . 6 (𝜑𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
21fveq2d 6357 . . . . 5 (𝜑 → (𝑉𝐹) = (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)))
3 signsvf.e . . . . . 6 (𝜑𝐸 ∈ (Word ℝ ∖ {∅}))
4 signsvf.0 . . . . . 6 (𝜑 → (𝐸‘0) ≠ 0)
5 signsvf.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
6 signsv.p . . . . . . 7 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
7 signsv.w . . . . . . 7 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
8 signsv.t . . . . . . 7 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
9 signsv.v . . . . . . 7 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
106, 7, 8, 9signsvfn 30989 . . . . . 6 (((𝐸 ∈ (Word ℝ ∖ {∅}) ∧ (𝐸‘0) ≠ 0) ∧ 𝐴 ∈ ℝ) → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
113, 4, 5, 10syl21anc 1476 . . . . 5 (𝜑 → (𝑉‘(𝐸 ++ ⟨“𝐴”⟩)) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
122, 11eqtrd 2794 . . . 4 (𝜑 → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
1312adantr 472 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) = ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)))
14 signsvt.b . . . . . . . 8 𝐵 = ((𝑇𝐸)‘(𝑁 − 1))
15 signsvf.n . . . . . . . . . 10 𝑁 = (♯‘𝐸)
1615oveq1i 6824 . . . . . . . . 9 (𝑁 − 1) = ((♯‘𝐸) − 1)
1716fveq2i 6356 . . . . . . . 8 ((𝑇𝐸)‘(𝑁 − 1)) = ((𝑇𝐸)‘((♯‘𝐸) − 1))
1814, 17eqtri 2782 . . . . . . 7 𝐵 = ((𝑇𝐸)‘((♯‘𝐸) − 1))
1918oveq1i 6824 . . . . . 6 (𝐵 · 𝐴) = (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴)
203adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ (Word ℝ ∖ {∅}))
2120eldifad 3727 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐸 ∈ Word ℝ)
226, 7, 8, 9signstf 30973 . . . . . . . . . . . 12 (𝐸 ∈ Word ℝ → (𝑇𝐸) ∈ Word ℝ)
23 wrdf 13516 . . . . . . . . . . . 12 ((𝑇𝐸) ∈ Word ℝ → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
2421, 22, 233syl 18 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑇𝐸):(0..^(♯‘(𝑇𝐸)))⟶ℝ)
25 eldifsn 4462 . . . . . . . . . . . . . . 15 (𝐸 ∈ (Word ℝ ∖ {∅}) ↔ (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
263, 25sylib 208 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
2726adantr 472 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅))
28 lennncl 13531 . . . . . . . . . . . . 13 ((𝐸 ∈ Word ℝ ∧ 𝐸 ≠ ∅) → (♯‘𝐸) ∈ ℕ)
29 fzo0end 12774 . . . . . . . . . . . . 13 ((♯‘𝐸) ∈ ℕ → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
3027, 28, 293syl 18 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘𝐸)))
316, 7, 8, 9signstlen 30974 . . . . . . . . . . . . . 14 (𝐸 ∈ Word ℝ → (♯‘(𝑇𝐸)) = (♯‘𝐸))
3221, 31syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (♯‘(𝑇𝐸)) = (♯‘𝐸))
3332oveq2d 6830 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (0..^(♯‘(𝑇𝐸))) = (0..^(♯‘𝐸)))
3430, 33eleqtrrd 2842 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((♯‘𝐸) − 1) ∈ (0..^(♯‘(𝑇𝐸))))
3524, 34ffvelrnd 6524 . . . . . . . . . 10 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑇𝐸)‘((♯‘𝐸) − 1)) ∈ ℝ)
3618, 35syl5eqel 2843 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
3736recnd 10280 . . . . . . . 8 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℂ)
385adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
3938recnd 10280 . . . . . . . 8 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℂ)
4037, 39mulcomd 10273 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) = (𝐴 · 𝐵))
41 simpr 479 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐴 · 𝐵) < 0)
4240, 41eqbrtrd 4826 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
4319, 42syl5eqbrr 4840 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0)
4443iftrued 4238 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0) = 1)
4544oveq2d 6830 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐸) + if((((𝑇𝐸)‘((♯‘𝐸) − 1)) · 𝐴) < 0, 1, 0)) = ((𝑉𝐸) + 1))
4613, 45eqtr2d 2795 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐸) + 1) = (𝑉𝐹))
476, 7, 8, 9signsvvf 30986 . . . . . 6 𝑉:Word ℝ⟶ℕ0
4847a1i 11 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝑉:Word ℝ⟶ℕ0)
491adantr 472 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 = (𝐸 ++ ⟨“𝐴”⟩))
5038s1cld 13593 . . . . . . 7 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ⟨“𝐴”⟩ ∈ Word ℝ)
51 ccatcl 13566 . . . . . . 7 ((𝐸 ∈ Word ℝ ∧ ⟨“𝐴”⟩ ∈ Word ℝ) → (𝐸 ++ ⟨“𝐴”⟩) ∈ Word ℝ)
5221, 50, 51syl2anc 696 . . . . . 6 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝐸 ++ ⟨“𝐴”⟩) ∈ Word ℝ)
5349, 52eqeltrd 2839 . . . . 5 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 𝐹 ∈ Word ℝ)
5448, 53ffvelrnd 6524 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) ∈ ℕ0)
5554nn0cnd 11565 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐹) ∈ ℂ)
5648, 21ffvelrnd 6524 . . . 4 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐸) ∈ ℕ0)
5756nn0cnd 11565 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (𝑉𝐸) ∈ ℂ)
58 1cnd 10268 . . 3 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → 1 ∈ ℂ)
5955, 57, 58subaddd 10622 . 2 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → (((𝑉𝐹) − (𝑉𝐸)) = 1 ↔ ((𝑉𝐸) + 1) = (𝑉𝐹)))
6046, 59mpbird 247 1 ((𝜑 ∧ (𝐴 · 𝐵) < 0) → ((𝑉𝐹) − (𝑉𝐸)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  cdif 3712  c0 4058  ifcif 4230  {csn 4321  {cpr 4323  {ctp 4325  cop 4327   class class class wbr 4804  cmpt 4881  wf 6045  cfv 6049  (class class class)co 6814  cmpt2 6816  cr 10147  0cc0 10148  1c1 10149   + caddc 10151   · cmul 10153   < clt 10286  cmin 10478  -cneg 10479  cn 11232  0cn0 11504  ...cfz 12539  ..^cfzo 12679  chash 13331  Word cword 13497   ++ cconcat 13499  ⟨“cs1 13500  sgncsgn 14045  Σcsu 14635  ndxcnx 16076  Basecbs 16079  +gcplusg 16163   Σg cgsu 16323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-xnn0 11576  df-z 11590  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-word 13505  df-lsw 13506  df-concat 13507  df-s1 13508  df-substr 13509  df-sgn 14046  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-plusg 16176  df-0g 16324  df-gsum 16325  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mulg 17762  df-cntz 17970
This theorem is referenced by:  signsvfnn  30993
  Copyright terms: Public domain W3C validator