Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvp Structured version   Visualization version   GIF version

Theorem signstfvp 30978
 Description: Zero-skipping sign in a word compared to a shorter word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvp ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = ((𝑇𝐹)‘𝑁))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝐾,𝑖,𝑛   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝐾(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvp
StepHypRef Expression
1 simp1 1131 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ)
21adantr 472 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝐹 ∈ Word ℝ)
3 s1cl 13592 . . . . . . . 8 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
433ad2ant2 1129 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ⟨“𝐾”⟩ ∈ Word ℝ)
54adantr 472 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → ⟨“𝐾”⟩ ∈ Word ℝ)
6 simp3 1133 . . . . . . . 8 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘𝐹)))
7 fzssfzo 30943 . . . . . . . 8 (𝑁 ∈ (0..^(♯‘𝐹)) → (0...𝑁) ⊆ (0..^(♯‘𝐹)))
86, 7syl 17 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0...𝑁) ⊆ (0..^(♯‘𝐹)))
98sselda 3744 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → 𝑖 ∈ (0..^(♯‘𝐹)))
10 ccatval1 13569 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
112, 5, 9, 10syl3anc 1477 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → ((𝐹 ++ ⟨“𝐾”⟩)‘𝑖) = (𝐹𝑖))
1211fveq2d 6357 . . . 4 (((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑁)) → (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)) = (sgn‘(𝐹𝑖)))
1312mpteq2dva 4896 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖))) = (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖))))
1413oveq2d 6830 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
15 ccatcl 13566 . . . 4 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
161, 4, 15syl2anc 696 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ)
17 lencl 13530 . . . . . . . 8 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0)
1817nn0zd 11692 . . . . . . 7 (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℤ)
19 uzid 11914 . . . . . . 7 ((♯‘𝐹) ∈ ℤ → (♯‘𝐹) ∈ (ℤ‘(♯‘𝐹)))
20 peano2uz 11954 . . . . . . 7 ((♯‘𝐹) ∈ (ℤ‘(♯‘𝐹)) → ((♯‘𝐹) + 1) ∈ (ℤ‘(♯‘𝐹)))
21 fzoss2 12710 . . . . . . 7 (((♯‘𝐹) + 1) ∈ (ℤ‘(♯‘𝐹)) → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
2218, 19, 20, 214syl 19 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
23223ad2ant1 1128 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘𝐹)) ⊆ (0..^((♯‘𝐹) + 1)))
2423, 6sseldd 3745 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^((♯‘𝐹) + 1)))
25 ccatlen 13567 . . . . . . 7 ((𝐹 ∈ Word ℝ ∧ ⟨“𝐾”⟩ ∈ Word ℝ) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
261, 4, 25syl2anc 696 . . . . . 6 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)))
27 s1len 13596 . . . . . . 7 (♯‘⟨“𝐾”⟩) = 1
2827oveq2i 6825 . . . . . 6 ((♯‘𝐹) + (♯‘⟨“𝐾”⟩)) = ((♯‘𝐹) + 1)
2926, 28syl6eq 2810 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (♯‘(𝐹 ++ ⟨“𝐾”⟩)) = ((♯‘𝐹) + 1))
3029oveq2d 6830 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))) = (0..^((♯‘𝐹) + 1)))
3124, 30eleqtrrd 2842 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝑁 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩))))
32 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
33 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
34 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
35 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
3632, 33, 34, 35signstfval 30971 . . 3 (((𝐹 ++ ⟨“𝐾”⟩) ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘(𝐹 ++ ⟨“𝐾”⟩)))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
3716, 31, 36syl2anc 696 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘((𝐹 ++ ⟨“𝐾”⟩)‘𝑖)))))
3832, 33, 34, 35signstfval 30971 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
391, 6, 38syl2anc 696 . 2 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) = (𝑊 Σg (𝑖 ∈ (0...𝑁) ↦ (sgn‘(𝐹𝑖)))))
4014, 37, 393eqtr4d 2804 1 ((𝐹 ∈ Word ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘(𝐹 ++ ⟨“𝐾”⟩))‘𝑁) = ((𝑇𝐹)‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932   ⊆ wss 3715  ifcif 4230  {cpr 4323  {ctp 4325  ⟨cop 4327   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6814   ↦ cmpt2 6816  ℝcr 10147  0cc0 10148  1c1 10149   + caddc 10151   − cmin 10478  -cneg 10479  ℤcz 11589  ℤ≥cuz 11899  ...cfz 12539  ..^cfzo 12679  ♯chash 13331  Word cword 13497   ++ cconcat 13499  ⟨“cs1 13500  sgncsgn 14045  Σcsu 14635  ndxcnx 16076  Basecbs 16079  +gcplusg 16163   Σg cgsu 16323 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680  df-hash 13332  df-word 13505  df-concat 13507  df-s1 13508 This theorem is referenced by:  signstfvneq0  30979  signstfvc  30981  signstfveq0  30984  signsvfn  30989
 Copyright terms: Public domain W3C validator