![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfveq0a | Structured version Visualization version GIF version |
Description: Lemma for signstfveq0 30994. (Contributed by Thierry Arnoux, 11-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signstfveq0.1 | ⊢ 𝑁 = (♯‘𝐹) |
Ref | Expression |
---|---|
signstfveq0a | ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 750 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
2 | 1 | eldifad 3735 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝐹 ∈ Word ℝ) |
3 | signstfveq0.1 | . . . . 5 ⊢ 𝑁 = (♯‘𝐹) | |
4 | lencl 13520 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
5 | 3, 4 | syl5eqel 2854 | . . . 4 ⊢ (𝐹 ∈ Word ℝ → 𝑁 ∈ ℕ0) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ0) |
7 | eldifsn 4454 | . . . . 5 ⊢ (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) | |
8 | 1, 7 | sylib 208 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅)) |
9 | hasheq0 13356 | . . . . . . 7 ⊢ (𝐹 ∈ Word ℝ → ((♯‘𝐹) = 0 ↔ 𝐹 = ∅)) | |
10 | 9 | necon3bid 2987 | . . . . . 6 ⊢ (𝐹 ∈ Word ℝ → ((♯‘𝐹) ≠ 0 ↔ 𝐹 ≠ ∅)) |
11 | 10 | biimpar 463 | . . . . 5 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≠ 0) |
12 | 3 | neeq1i 3007 | . . . . 5 ⊢ (𝑁 ≠ 0 ↔ (♯‘𝐹) ≠ 0) |
13 | 11, 12 | sylibr 224 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → 𝑁 ≠ 0) |
14 | 8, 13 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 0) |
15 | elnnne0 11513 | . . 3 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
16 | 6, 14, 15 | sylanbrc 572 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ ℕ) |
17 | simplr 752 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ 0) | |
18 | simpr 471 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) = 0) | |
19 | 17, 18 | neeqtrrd 3017 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘0) ≠ (𝐹‘(𝑁 − 1))) |
20 | 19 | necomd 2998 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → (𝐹‘(𝑁 − 1)) ≠ (𝐹‘0)) |
21 | oveq1 6803 | . . . . . 6 ⊢ (𝑁 = 1 → (𝑁 − 1) = (1 − 1)) | |
22 | 1m1e0 11295 | . . . . . 6 ⊢ (1 − 1) = 0 | |
23 | 21, 22 | syl6eq 2821 | . . . . 5 ⊢ (𝑁 = 1 → (𝑁 − 1) = 0) |
24 | 23 | fveq2d 6337 | . . . 4 ⊢ (𝑁 = 1 → (𝐹‘(𝑁 − 1)) = (𝐹‘0)) |
25 | 24 | necon3i 2975 | . . 3 ⊢ ((𝐹‘(𝑁 − 1)) ≠ (𝐹‘0) → 𝑁 ≠ 1) |
26 | 20, 25 | syl 17 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ≠ 1) |
27 | eluz2b3 11970 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) | |
28 | 16, 26, 27 | sylanbrc 572 | 1 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ (𝐹‘(𝑁 − 1)) = 0) → 𝑁 ∈ (ℤ≥‘2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 ∅c0 4063 ifcif 4226 {csn 4317 {cpr 4319 {ctp 4321 〈cop 4323 ↦ cmpt 4864 ‘cfv 6030 (class class class)co 6796 ↦ cmpt2 6798 ℝcr 10141 0cc0 10142 1c1 10143 − cmin 10472 -cneg 10473 ℕcn 11226 2c2 11276 ℕ0cn0 11499 ℤ≥cuz 11893 ...cfz 12533 ..^cfzo 12673 ♯chash 13321 Word cword 13487 sgncsgn 14034 Σcsu 14624 ndxcnx 16061 Basecbs 16064 +gcplusg 16149 Σg cgsu 16309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-hash 13322 df-word 13495 |
This theorem is referenced by: signstfveq0 30994 |
Copyright terms: Public domain | W3C validator |