Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstf Structured version   Visualization version   GIF version

Theorem signstf 30983
Description: The zero skipping sign word is a word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstf (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝐹(𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstf
StepHypRef Expression
1 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
2 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
3 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
4 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
51, 2, 3, 4signstfv 30980 . . 3 (𝐹 ∈ Word ℝ → (𝑇𝐹) = (𝑛 ∈ (0..^(♯‘𝐹)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖))))))
6 neg1rr 11331 . . . . 5 -1 ∈ ℝ
7 0re 10246 . . . . 5 0 ∈ ℝ
8 1re 10245 . . . . 5 1 ∈ ℝ
9 tpssi 4503 . . . . 5 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 1 ∈ ℝ) → {-1, 0, 1} ⊆ ℝ)
106, 7, 8, 9mp3an 1572 . . . 4 {-1, 0, 1} ⊆ ℝ
111, 2signswbase 30971 . . . . 5 {-1, 0, 1} = (Base‘𝑊)
121, 2signswmnd 30974 . . . . . 6 𝑊 ∈ Mnd
1312a1i 11 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑊 ∈ Mnd)
14 fzo0ssnn0 12757 . . . . . . . 8 (0..^(♯‘𝐹)) ⊆ ℕ0
15 nn0uz 11929 . . . . . . . 8 0 = (ℤ‘0)
1614, 15sseqtri 3786 . . . . . . 7 (0..^(♯‘𝐹)) ⊆ (ℤ‘0)
1716a1i 11 . . . . . 6 (𝐹 ∈ Word ℝ → (0..^(♯‘𝐹)) ⊆ (ℤ‘0))
1817sselda 3752 . . . . 5 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → 𝑛 ∈ (ℤ‘0))
19 wrdf 13506 . . . . . . . . 9 (𝐹 ∈ Word ℝ → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
2019ad2antrr 705 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝐹:(0..^(♯‘𝐹))⟶ℝ)
21 fzssfzo 30953 . . . . . . . . . 10 (𝑛 ∈ (0..^(♯‘𝐹)) → (0...𝑛) ⊆ (0..^(♯‘𝐹)))
2221adantl 467 . . . . . . . . 9 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (0...𝑛) ⊆ (0..^(♯‘𝐹)))
2322sselda 3752 . . . . . . . 8 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → 𝑖 ∈ (0..^(♯‘𝐹)))
2420, 23ffvelrnd 6505 . . . . . . 7 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹𝑖) ∈ ℝ)
2524rexrd 10295 . . . . . 6 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (𝐹𝑖) ∈ ℝ*)
26 sgncl 30940 . . . . . 6 ((𝐹𝑖) ∈ ℝ* → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2725, 26syl 17 . . . . 5 (((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) ∧ 𝑖 ∈ (0...𝑛)) → (sgn‘(𝐹𝑖)) ∈ {-1, 0, 1})
2811, 13, 18, 27gsumncl 30954 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) ∈ {-1, 0, 1})
2910, 28sseldi 3750 . . 3 ((𝐹 ∈ Word ℝ ∧ 𝑛 ∈ (0..^(♯‘𝐹))) → (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝐹𝑖)))) ∈ ℝ)
305, 29fmpt3d 6531 . 2 (𝐹 ∈ Word ℝ → (𝑇𝐹):(0..^(♯‘𝐹))⟶ℝ)
31 iswrdi 13505 . 2 ((𝑇𝐹):(0..^(♯‘𝐹))⟶ℝ → (𝑇𝐹) ∈ Word ℝ)
3230, 31syl 17 1 (𝐹 ∈ Word ℝ → (𝑇𝐹) ∈ Word ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wss 3723  ifcif 4226  {cpr 4319  {ctp 4321  cop 4323  cmpt 4864  wf 6026  cfv 6030  (class class class)co 6796  cmpt2 6798  cr 10141  0cc0 10142  1c1 10143  *cxr 10279  cmin 10472  -cneg 10473  0cn0 11499  cuz 11893  ...cfz 12533  ..^cfzo 12673  chash 13321  Word cword 13487  sgncsgn 14034  Σcsu 14624  ndxcnx 16061  Basecbs 16064  +gcplusg 16149   Σg cgsu 16309  Mndcmnd 17502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-word 13495  df-sgn 14035  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mgm 17450  df-sgrp 17492  df-mnd 17503
This theorem is referenced by:  signstres  30992  signsvtp  31000  signsvtn  31001
  Copyright terms: Public domain W3C validator