Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsply0 Structured version   Visualization version   GIF version

Theorem signsply0 30756
Description: Lemma for the rule of signs, based on Bolzano's intermediate value theorem for polynomials : If the lowest and highest coefficient 𝐴 and 𝐵 are of opposite signs, the polynomial admits a positive root. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
signsply0.d 𝐷 = (deg‘𝐹)
signsply0.c 𝐶 = (coeff‘𝐹)
signsply0.b 𝐵 = (𝐶𝐷)
signsply0.a 𝐴 = (𝐶‘0)
signsply0.1 (𝜑𝐹 ∈ (Poly‘ℝ))
signsply0.2 (𝜑𝐹 ≠ 0𝑝)
signsply0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
signsply0 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Distinct variable groups:   𝑧,𝐵   𝑧,𝐹   𝜑,𝑧
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑧)   𝐷(𝑧)

Proof of Theorem signsply0
Dummy variables 𝑒 𝑑 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 807 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑 ∈ ℝ+)
2 simpr 476 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
3 rpxr 11878 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ∈ ℝ*)
4 xrleid 12021 . . . . . . . 8 (𝑑 ∈ ℝ*𝑑𝑑)
53, 4syl 17 . . . . . . 7 (𝑑 ∈ ℝ+𝑑𝑑)
65ad2antlr 763 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → 𝑑𝑑)
7 id 22 . . . . . . 7 (𝑑 ∈ ℝ+𝑑 ∈ ℝ+)
8 simpr 476 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → 𝑓 = 𝑑)
98breq2d 4697 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑑𝑓𝑑𝑑))
108fveq2d 6233 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝐹𝑓) = (𝐹𝑑))
118oveq1d 6705 . . . . . . . . . . . 12 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (𝑓𝐷) = (𝑑𝐷))
1210, 11oveq12d 6708 . . . . . . . . . . 11 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝐹𝑓) / (𝑓𝐷)) = ((𝐹𝑑) / (𝑑𝐷)))
1312oveq1d 6705 . . . . . . . . . 10 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (((𝐹𝑓) / (𝑓𝐷)) − 𝐵) = (((𝐹𝑑) / (𝑑𝐷)) − 𝐵))
1413fveq2d 6233 . . . . . . . . 9 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) = (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)))
1514breq1d 4695 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵))
169, 15imbi12d 333 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
177, 16rspcdv 3343 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)))
181, 2, 6, 17syl3c 66 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵)
19 signsply0.1 . . . . . . . . . . . 12 (𝜑𝐹 ∈ (Poly‘ℝ))
2019ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
21 simpr 476 . . . . . . . . . . . 12 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
2221rpred 11910 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
2320, 22plyrecld 30754 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
24 signsply0.d . . . . . . . . . . . . 13 𝐷 = (deg‘𝐹)
25 dgrcl 24034 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘ℝ) → (deg‘𝐹) ∈ ℕ0)
2619, 25syl 17 . . . . . . . . . . . . 13 (𝜑 → (deg‘𝐹) ∈ ℕ0)
2724, 26syl5eqel 2734 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℕ0)
2827ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
2922, 28reexpcld 13065 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
3021rpcnd 11912 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
3121rpne0d 11915 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
3227nn0zd 11518 . . . . . . . . . . . 12 (𝜑𝐷 ∈ ℤ)
3332ad2antrr 762 . . . . . . . . . . 11 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
3430, 31, 33expne0d 13054 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
3523, 29, 34redivcld 10891 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
36 signsply0.b . . . . . . . . . . . 12 𝐵 = (𝐶𝐷)
37 0re 10078 . . . . . . . . . . . . . 14 0 ∈ ℝ
38 signsply0.c . . . . . . . . . . . . . . 15 𝐶 = (coeff‘𝐹)
3938coef2 24032 . . . . . . . . . . . . . 14 ((𝐹 ∈ (Poly‘ℝ) ∧ 0 ∈ ℝ) → 𝐶:ℕ0⟶ℝ)
4037, 39mpan2 707 . . . . . . . . . . . . 13 (𝐹 ∈ (Poly‘ℝ) → 𝐶:ℕ0⟶ℝ)
4140ffvelrnda 6399 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → (𝐶𝐷) ∈ ℝ)
4236, 41syl5eqel 2734 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘ℝ) ∧ 𝐷 ∈ ℕ0) → 𝐵 ∈ ℝ)
4319, 27, 42syl2anc 694 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
4443ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
4544renegcld 10495 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → -𝐵 ∈ ℝ)
4635, 44, 45absdifltd 14216 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵 ↔ ((𝐵 − -𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))))
4746simplbda 653 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + -𝐵))
4843recnd 10106 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
4948ad2antrr 762 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
5049negidd 10420 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵 + -𝐵) = 0)
5150adantr 480 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐵 + -𝐵) = 0)
5247, 51breqtrd 4711 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) / (𝑑𝐷)) < 0)
5321, 33rpexpcld 13072 . . . . . . . . . 10 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
5423, 53ge0divd 11948 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 ≤ (𝐹𝑑) ↔ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5554notbid 307 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (¬ 0 ≤ (𝐹𝑑) ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
56 0red 10079 . . . . . . . . 9 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 0 ∈ ℝ)
5723, 56ltnled 10222 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ¬ 0 ≤ (𝐹𝑑)))
5835, 56ltnled 10222 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (((𝐹𝑑) / (𝑑𝐷)) < 0 ↔ ¬ 0 ≤ ((𝐹𝑑) / (𝑑𝐷))))
5955, 57, 583bitr4d 300 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
6059adantr 480 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → ((𝐹𝑑) < 0 ↔ ((𝐹𝑑) / (𝑑𝐷)) < 0))
6152, 60mpbird 247 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < -𝐵) → (𝐹𝑑) < 0)
6218, 61syldan 486 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → (𝐹𝑑) < 0)
63 0red 10079 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 ∈ ℝ)
64 simplr 807 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ+)
6564rpred 11910 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝑑 ∈ ℝ)
6664rpgt0d 11913 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < 𝑑)
67 iccssre 12293 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (0[,]𝑑) ⊆ ℝ)
6837, 65, 67sylancr 696 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℝ)
69 ax-resscn 10031 . . . . . . 7 ℝ ⊆ ℂ
7068, 69syl6ss 3648 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (0[,]𝑑) ⊆ ℂ)
71 plycn 24062 . . . . . . . 8 (𝐹 ∈ (Poly‘ℝ) → 𝐹 ∈ (ℂ–cn→ℂ))
7219, 71syl 17 . . . . . . 7 (𝜑𝐹 ∈ (ℂ–cn→ℂ))
7372ad3antrrr 766 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐹 ∈ (ℂ–cn→ℂ))
7419ad4antr 769 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
7568sselda 3636 . . . . . . 7 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
7674, 75plyrecld 30754 . . . . . 6 (((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
77 simpr 476 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹𝑑) < 0)
78 simplll 813 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝜑)
7978, 43syl 17 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 ∈ ℝ)
80 simpr 476 . . . . . . . . . . 11 ((𝜑 ∧ -𝐵 ∈ ℝ+) → -𝐵 ∈ ℝ+)
8180ad2antrr 762 . . . . . . . . . 10 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → -𝐵 ∈ ℝ+)
82 negelrp 11902 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (-𝐵 ∈ ℝ+𝐵 < 0))
8382biimpa 500 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ -𝐵 ∈ ℝ+) → 𝐵 < 0)
8479, 81, 83syl2anc 694 . . . . . . . . 9 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 𝐵 < 0)
85 signsply0.a . . . . . . . . . . . 12 𝐴 = (𝐶‘0)
8619, 37, 39sylancl 695 . . . . . . . . . . . . 13 (𝜑𝐶:ℕ0⟶ℝ)
87 0nn0 11345 . . . . . . . . . . . . . 14 0 ∈ ℕ0
8887a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℕ0)
8986, 88ffvelrnd 6400 . . . . . . . . . . . 12 (𝜑 → (𝐶‘0) ∈ ℝ)
9085, 89syl5eqel 2734 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
91 signsply0.3 . . . . . . . . . . 11 (𝜑 → (𝐴 · 𝐵) < 0)
9290, 43, 91mul2lt0rlt0 11970 . . . . . . . . . 10 ((𝜑𝐵 < 0) → 0 < 𝐴)
9392, 85syl6breq 4726 . . . . . . . . 9 ((𝜑𝐵 < 0) → 0 < (𝐶‘0))
9478, 84, 93syl2anc 694 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐶‘0))
9538coefv0 24049 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℝ) → (𝐹‘0) = (𝐶‘0))
9619, 95syl 17 . . . . . . . . 9 (𝜑 → (𝐹‘0) = (𝐶‘0))
9796ad3antrrr 766 . . . . . . . 8 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (𝐹‘0) = (𝐶‘0))
9894, 97breqtrrd 4713 . . . . . . 7 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → 0 < (𝐹‘0))
9977, 98jca 553 . . . . . 6 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ((𝐹𝑑) < 0 ∧ 0 < (𝐹‘0)))
10063, 65, 63, 66, 70, 73, 76, 99ivth2 23270 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
101 0le0 11148 . . . . . . . 8 0 ≤ 0
102 pnfge 12002 . . . . . . . . 9 (𝑑 ∈ ℝ*𝑑 ≤ +∞)
1033, 102syl 17 . . . . . . . 8 (𝑑 ∈ ℝ+𝑑 ≤ +∞)
104 0xr 10124 . . . . . . . . 9 0 ∈ ℝ*
105 pnfxr 10130 . . . . . . . . 9 +∞ ∈ ℝ*
106 ioossioo 12303 . . . . . . . . 9 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑑 ≤ +∞)) → (0(,)𝑑) ⊆ (0(,)+∞))
107104, 105, 106mpanl12 718 . . . . . . . 8 ((0 ≤ 0 ∧ 𝑑 ≤ +∞) → (0(,)𝑑) ⊆ (0(,)+∞))
108101, 103, 107sylancr 696 . . . . . . 7 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ (0(,)+∞))
109 ioorp 12289 . . . . . . 7 (0(,)+∞) = ℝ+
110108, 109syl6sseq 3684 . . . . . 6 (𝑑 ∈ ℝ+ → (0(,)𝑑) ⊆ ℝ+)
111 ssrexv 3700 . . . . . 6 ((0(,)𝑑) ⊆ ℝ+ → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
11264, 110, 1113syl 18 . . . . 5 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
113100, 112mpd 15 . . . 4 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (𝐹𝑑) < 0) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
11462, 113syldan 486 . . 3 ((((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
115 plyf 23999 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ)
11619, 115syl 17 . . . . . . . . . 10 (𝜑𝐹:ℂ⟶ℂ)
117 ffn 6083 . . . . . . . . . 10 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
118116, 117syl 17 . . . . . . . . 9 (𝜑𝐹 Fn ℂ)
119 ovex 6718 . . . . . . . . . . 11 (𝑥𝐷) ∈ V
120119rgenw 2953 . . . . . . . . . 10 𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V
121 eqid 2651 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))
122121fnmpt 6058 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+ (𝑥𝐷) ∈ V → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
123120, 122mp1i 13 . . . . . . . . 9 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) Fn ℝ+)
124 cnex 10055 . . . . . . . . . 10 ℂ ∈ V
125124a1i 11 . . . . . . . . 9 (𝜑 → ℂ ∈ V)
126 rpssre 11881 . . . . . . . . . . . 12 + ⊆ ℝ
127126, 69sstri 3645 . . . . . . . . . . 11 + ⊆ ℂ
128124, 127ssexi 4836 . . . . . . . . . 10 + ∈ V
129128a1i 11 . . . . . . . . 9 (𝜑 → ℝ+ ∈ V)
130 sseqin2 3850 . . . . . . . . . 10 (ℝ+ ⊆ ℂ ↔ (ℂ ∩ ℝ+) = ℝ+)
131127, 130mpbi 220 . . . . . . . . 9 (ℂ ∩ ℝ+) = ℝ+
132 eqidd 2652 . . . . . . . . 9 ((𝜑𝑓 ∈ ℂ) → (𝐹𝑓) = (𝐹𝑓))
133 eqidd 2652 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)))
134 simpr 476 . . . . . . . . . . 11 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → 𝑥 = 𝑓)
135134oveq1d 6705 . . . . . . . . . 10 (((𝜑𝑓 ∈ ℝ+) ∧ 𝑥 = 𝑓) → (𝑥𝐷) = (𝑓𝐷))
136 simpr 476 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℝ+)
137 ovexd 6720 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ V)
138133, 135, 136, 137fvmptd 6327 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝑥 ∈ ℝ+ ↦ (𝑥𝐷))‘𝑓) = (𝑓𝐷))
139118, 123, 125, 129, 131, 132, 138offval 6946 . . . . . . . 8 (𝜑 → (𝐹𝑓 / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) = (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))))
140 oveq1 6697 . . . . . . . . . . 11 (𝑥 = 𝑓 → (𝑥𝐷) = (𝑓𝐷))
141140cbvmptv 4783 . . . . . . . . . 10 (𝑥 ∈ ℝ+ ↦ (𝑥𝐷)) = (𝑓 ∈ ℝ+ ↦ (𝑓𝐷))
14224, 38, 36, 141signsplypnf 30755 . . . . . . . . 9 (𝐹 ∈ (Poly‘ℝ) → (𝐹𝑓 / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
14319, 142syl 17 . . . . . . . 8 (𝜑 → (𝐹𝑓 / (𝑥 ∈ ℝ+ ↦ (𝑥𝐷))) ⇝𝑟 𝐵)
144139, 143eqbrtrrd 4709 . . . . . . 7 (𝜑 → (𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵)
145116adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐹:ℂ⟶ℂ)
146136rpcnd 11912 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ∈ ℂ)
147145, 146ffvelrnd 6400 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝐹𝑓) ∈ ℂ)
14827adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℕ0)
149146, 148expcld 13048 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ∈ ℂ)
150136rpne0d 11915 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝑓 ≠ 0)
15132adantr 480 . . . . . . . . . . 11 ((𝜑𝑓 ∈ ℝ+) → 𝐷 ∈ ℤ)
152146, 150, 151expne0d 13054 . . . . . . . . . 10 ((𝜑𝑓 ∈ ℝ+) → (𝑓𝐷) ≠ 0)
153147, 149, 152divcld 10839 . . . . . . . . 9 ((𝜑𝑓 ∈ ℝ+) → ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
154153ralrimiva 2995 . . . . . . . 8 (𝜑 → ∀𝑓 ∈ ℝ+ ((𝐹𝑓) / (𝑓𝐷)) ∈ ℂ)
155126a1i 11 . . . . . . . 8 (𝜑 → ℝ+ ⊆ ℝ)
156 1red 10093 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
157154, 155, 48, 156rlim3 14273 . . . . . . 7 (𝜑 → ((𝑓 ∈ ℝ+ ↦ ((𝐹𝑓) / (𝑓𝐷))) ⇝𝑟 𝐵 ↔ ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
158144, 157mpbid 222 . . . . . 6 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
159 0lt1 10588 . . . . . . . . . 10 0 < 1
160 pnfge 12002 . . . . . . . . . . 11 (+∞ ∈ ℝ* → +∞ ≤ +∞)
161105, 160ax-mp 5 . . . . . . . . . 10 +∞ ≤ +∞
162 icossioo 12302 . . . . . . . . . 10 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 < 1 ∧ +∞ ≤ +∞)) → (1[,)+∞) ⊆ (0(,)+∞))
163104, 105, 159, 161, 162mp4an 709 . . . . . . . . 9 (1[,)+∞) ⊆ (0(,)+∞)
164163, 109sseqtri 3670 . . . . . . . 8 (1[,)+∞) ⊆ ℝ+
165 ssrexv 3700 . . . . . . . 8 ((1[,)+∞) ⊆ ℝ+ → (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒)))
166164, 165ax-mp 5 . . . . . . 7 (∃𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
167166ralimi 2981 . . . . . 6 (∀𝑒 ∈ ℝ+𝑑 ∈ (1[,)+∞)∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
168158, 167syl 17 . . . . 5 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
169168adantr 480 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
170 simpr 476 . . . . . . . 8 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → 𝑒 = -𝐵)
171170breq2d 4697 . . . . . . 7 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
172171imbi2d 329 . . . . . 6 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
173172rexralbidv 3087 . . . . 5 (((𝜑 ∧ -𝐵 ∈ ℝ+) ∧ 𝑒 = -𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
17480, 173rspcdv 3343 . . . 4 ((𝜑 ∧ -𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵)))
175169, 174mpd 15 . . 3 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < -𝐵))
176114, 175r19.29a 3107 . 2 ((𝜑 ∧ -𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
177 simplr 807 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑 ∈ ℝ+)
178 simpr 476 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
1795ad2antlr 763 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 𝑑𝑑)
18014breq1d 4695 . . . . . . . 8 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵 ↔ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵))
1819, 180imbi12d 333 . . . . . . 7 ((𝑑 ∈ ℝ+𝑓 = 𝑑) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) ↔ (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
1827, 181rspcdv 3343 . . . . . 6 (𝑑 ∈ ℝ+ → (∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵) → (𝑑𝑑 → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)))
183177, 178, 179, 182syl3c 66 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵)
18448ad2antrr 762 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℂ)
185184subidd 10418 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐵𝐵) = 0)
186185adantr 480 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) = 0)
18719ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐹 ∈ (Poly‘ℝ))
188126a1i 11 . . . . . . . . . . . 12 ((𝜑𝐵 ∈ ℝ+) → ℝ+ ⊆ ℝ)
189188sselda 3636 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ)
190187, 189plyrecld 30754 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝐹𝑑) ∈ ℝ)
19127ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℕ0)
192189, 191reexpcld 13065 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ)
193189recnd 10106 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℂ)
194 simpr 476 . . . . . . . . . . . 12 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ∈ ℝ+)
195194rpne0d 11915 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝑑 ≠ 0)
19632ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐷 ∈ ℤ)
197193, 195, 196expne0d 13054 . . . . . . . . . 10 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ≠ 0)
198190, 192, 197redivcld 10891 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((𝐹𝑑) / (𝑑𝐷)) ∈ ℝ)
19943ad2antrr 762 . . . . . . . . 9 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → 𝐵 ∈ ℝ)
200198, 199, 199absdifltd 14216 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → ((abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵 ↔ ((𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)) ∧ ((𝐹𝑑) / (𝑑𝐷)) < (𝐵 + 𝐵))))
201200simprbda 652 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (𝐵𝐵) < ((𝐹𝑑) / (𝑑𝐷)))
202186, 201eqbrtrrd 4709 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < ((𝐹𝑑) / (𝑑𝐷)))
203194, 196rpexpcld 13072 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (𝑑𝐷) ∈ ℝ+)
204190, 203gt0divd 11947 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
205204adantr 480 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → (0 < (𝐹𝑑) ↔ 0 < ((𝐹𝑑) / (𝑑𝐷))))
206202, 205mpbird 247 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ (abs‘(((𝐹𝑑) / (𝑑𝐷)) − 𝐵)) < 𝐵) → 0 < (𝐹𝑑))
207183, 206syldan 486 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → 0 < (𝐹𝑑))
208 0red 10079 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 ∈ ℝ)
209 simplr 807 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ+)
210209rpred 11910 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝑑 ∈ ℝ)
211209rpgt0d 11913 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝑑)
21237, 210, 67sylancr 696 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℝ)
213212, 69syl6ss 3648 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (0[,]𝑑) ⊆ ℂ)
21472ad3antrrr 766 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐹 ∈ (ℂ–cn→ℂ))
21519ad4antr 769 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝐹 ∈ (Poly‘ℝ))
216212sselda 3636 . . . . . . 7 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → 𝑥 ∈ ℝ)
217215, 216plyrecld 30754 . . . . . 6 (((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) ∧ 𝑥 ∈ (0[,]𝑑)) → (𝐹𝑥) ∈ ℝ)
21896ad3antrrr 766 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) = (𝐶‘0))
219 simplll 813 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝜑)
220 simpr1 1087 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 𝐵 ∈ ℝ+)
221220rpgt0d 11913 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 ∈ ℝ+𝑑 ∈ ℝ+ ∧ 0 < (𝐹𝑑))) → 0 < 𝐵)
2222213anassrs 1313 . . . . . . . . . 10 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < 𝐵)
22390, 43, 91mul2lt0rgt0 11971 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐵) → 𝐴 < 0)
224219, 222, 223syl2anc 694 . . . . . . . . 9 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 𝐴 < 0)
22585, 224syl5eqbrr 4721 . . . . . . . 8 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐶‘0) < 0)
226218, 225eqbrtrd 4707 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (𝐹‘0) < 0)
227 simpr 476 . . . . . . 7 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → 0 < (𝐹𝑑))
228226, 227jca 553 . . . . . 6 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ((𝐹‘0) < 0 ∧ 0 < (𝐹𝑑)))
229208, 210, 208, 211, 213, 214, 217, 228ivth 23269 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0)
230209, 110, 1113syl 18 . . . . 5 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → (∃𝑧 ∈ (0(,)𝑑)(𝐹𝑧) = 0 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0))
231229, 230mpd 15 . . . 4 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ 0 < (𝐹𝑑)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
232207, 231syldan 486 . . 3 ((((𝜑𝐵 ∈ ℝ+) ∧ 𝑑 ∈ ℝ+) ∧ ∀𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
233168adantr 480 . . . 4 ((𝜑𝐵 ∈ ℝ+) → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒))
234 simpr 476 . . . . 5 ((𝜑𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ+)
235 simpr 476 . . . . . . . 8 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → 𝑒 = 𝐵)
236235breq2d 4697 . . . . . . 7 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒 ↔ (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
237236imbi2d 329 . . . . . 6 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → ((𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
238237rexralbidv 3087 . . . . 5 (((𝜑𝐵 ∈ ℝ+) ∧ 𝑒 = 𝐵) → (∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) ↔ ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
239234, 238rspcdv 3343 . . . 4 ((𝜑𝐵 ∈ ℝ+) → (∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝑒) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵)))
240233, 239mpd 15 . . 3 ((𝜑𝐵 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑓 ∈ ℝ+ (𝑑𝑓 → (abs‘(((𝐹𝑓) / (𝑓𝐷)) − 𝐵)) < 𝐵))
241232, 240r19.29a 3107 . 2 ((𝜑𝐵 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
242 signsply0.2 . . . . 5 (𝜑𝐹 ≠ 0𝑝)
24324, 38dgreq0 24066 . . . . . . 7 (𝐹 ∈ (Poly‘ℝ) → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
24419, 243syl 17 . . . . . 6 (𝜑 → (𝐹 = 0𝑝 ↔ (𝐶𝐷) = 0))
245244necon3bid 2867 . . . . 5 (𝜑 → (𝐹 ≠ 0𝑝 ↔ (𝐶𝐷) ≠ 0))
246242, 245mpbid 222 . . . 4 (𝜑 → (𝐶𝐷) ≠ 0)
24736neeq1i 2887 . . . 4 (𝐵 ≠ 0 ↔ (𝐶𝐷) ≠ 0)
248246, 247sylibr 224 . . 3 (𝜑𝐵 ≠ 0)
249 rpneg 11901 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 ∈ ℝ+ ↔ ¬ -𝐵 ∈ ℝ+))
250249biimprd 238 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (¬ -𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
251250orrd 392 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
25243, 248, 251syl2anc 694 . 2 (𝜑 → (-𝐵 ∈ ℝ+𝐵 ∈ ℝ+))
253176, 241, 252mpjaodan 844 1 (𝜑 → ∃𝑧 ∈ ℝ+ (𝐹𝑧) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cin 3606  wss 3607   class class class wbr 4685  cmpt 4762   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  𝑓 cof 6937  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  0cn0 11330  cz 11415  +crp 11870  (,)cioo 12213  [,)cico 12215  [,]cicc 12216  cexp 12900  abscabs 14018  𝑟 crli 14260  cnccncf 22726  0𝑝c0p 23481  Polycply 23985  coeffccoe 23987  degcdgr 23988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-0p 23482  df-limc 23675  df-dv 23676  df-ply 23989  df-coe 23991  df-dgr 23992  df-log 24348  df-cxp 24349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator