Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signslema Structured version   Visualization version   GIF version

Theorem signslema 30970
Description: Computational part of signwlemn . (Contributed by Thierry Arnoux, 29-Sep-2018.)
Hypotheses
Ref Expression
signslema.1 (𝜑𝐸 ∈ ℕ0)
signslema.2 (𝜑𝐹 ∈ ℕ0)
signslema.3 (𝜑𝐺 ∈ ℕ0)
signslema.4 (𝜑𝐻 ∈ ℕ0)
signslema.5 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
signslema.6 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
Assertion
Ref Expression
signslema (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))

Proof of Theorem signslema
StepHypRef Expression
1 signslema.5 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ∧ ¬ 2 ∥ (𝐺𝐸)))
21simpld 477 . . . . 5 (𝜑𝐸 < 𝐺)
32adantr 472 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐸 < 𝐺)
4 signslema.4 . . . . . . . . . 10 (𝜑𝐻 ∈ ℕ0)
54nn0cnd 11566 . . . . . . . . 9 (𝜑𝐻 ∈ ℂ)
6 signslema.2 . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ0)
76nn0cnd 11566 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
85, 7subcld 10605 . . . . . . . 8 (𝜑 → (𝐻𝐹) ∈ ℂ)
9 signslema.3 . . . . . . . . . 10 (𝜑𝐺 ∈ ℕ0)
109nn0cnd 11566 . . . . . . . . 9 (𝜑𝐺 ∈ ℂ)
11 signslema.1 . . . . . . . . . 10 (𝜑𝐸 ∈ ℕ0)
1211nn0cnd 11566 . . . . . . . . 9 (𝜑𝐸 ∈ ℂ)
1310, 12subcld 10605 . . . . . . . 8 (𝜑 → (𝐺𝐸) ∈ ℂ)
148, 13subeq0ad 10615 . . . . . . 7 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ↔ (𝐻𝐹) = (𝐺𝐸)))
1514biimpa 502 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐻𝐹) = (𝐺𝐸))
1615breq2d 4817 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (0 < (𝐻𝐹) ↔ 0 < (𝐺𝐸)))
176nn0red 11565 . . . . . . 7 (𝜑𝐹 ∈ ℝ)
184nn0red 11565 . . . . . . 7 (𝜑𝐻 ∈ ℝ)
1917, 18posdifd 10827 . . . . . 6 (𝜑 → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2019adantr 472 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
2111nn0red 11565 . . . . . . 7 (𝜑𝐸 ∈ ℝ)
229nn0red 11565 . . . . . . 7 (𝜑𝐺 ∈ ℝ)
2321, 22posdifd 10827 . . . . . 6 (𝜑 → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2423adantr 472 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
2516, 20, 243bitr4rd 301 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (𝐸 < 𝐺𝐹 < 𝐻))
263, 25mpbid 222 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → 𝐹 < 𝐻)
27 0red 10254 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 ∈ ℝ)
2822, 21resubcld 10671 . . . . . 6 (𝜑 → (𝐺𝐸) ∈ ℝ)
2928adantr 472 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) ∈ ℝ)
3018, 17resubcld 10671 . . . . . 6 (𝜑 → (𝐻𝐹) ∈ ℝ)
3130adantr 472 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐻𝐹) ∈ ℝ)
322adantr 472 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐸 < 𝐺)
3323adantr 472 . . . . . 6 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐸 < 𝐺 ↔ 0 < (𝐺𝐸)))
3432, 33mpbid 222 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐺𝐸))
35 2pos 11325 . . . . . . 7 0 < 2
36 breq2 4809 . . . . . . 7 (((𝐻𝐹) − (𝐺𝐸)) = 2 → (0 < ((𝐻𝐹) − (𝐺𝐸)) ↔ 0 < 2))
3735, 36mpbiri 248 . . . . . 6 (((𝐻𝐹) − (𝐺𝐸)) = 2 → 0 < ((𝐻𝐹) − (𝐺𝐸)))
3828, 30posdifd 10827 . . . . . . 7 (𝜑 → ((𝐺𝐸) < (𝐻𝐹) ↔ 0 < ((𝐻𝐹) − (𝐺𝐸))))
3938biimpar 503 . . . . . 6 ((𝜑 ∧ 0 < ((𝐻𝐹) − (𝐺𝐸))) → (𝐺𝐸) < (𝐻𝐹))
4037, 39sylan2 492 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐺𝐸) < (𝐻𝐹))
4127, 29, 31, 34, 40lttrd 10411 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 0 < (𝐻𝐹))
4219adantr 472 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (𝐹 < 𝐻 ↔ 0 < (𝐻𝐹)))
4341, 42mpbird 247 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → 𝐹 < 𝐻)
445, 10, 7, 12sub4d 10654 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) = ((𝐻𝐹) − (𝐺𝐸)))
45 signslema.6 . . . . 5 (𝜑 → ((𝐻𝐺) − (𝐹𝐸)) ∈ {0, 2})
4644, 45eqeltrrd 2841 . . . 4 (𝜑 → ((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2})
47 ovex 6843 . . . . 5 ((𝐻𝐹) − (𝐺𝐸)) ∈ V
4847elpr 4344 . . . 4 (((𝐻𝐹) − (𝐺𝐸)) ∈ {0, 2} ↔ (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
4946, 48sylib 208 . . 3 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 0 ∨ ((𝐻𝐹) − (𝐺𝐸)) = 2))
5026, 43, 49mpjaodan 862 . 2 (𝜑𝐹 < 𝐻)
511simprd 482 . . . . 5 (𝜑 → ¬ 2 ∥ (𝐺𝐸))
5251adantr 472 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐺𝐸))
5315breq2d 4817 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → (2 ∥ (𝐻𝐹) ↔ 2 ∥ (𝐺𝐸)))
5452, 53mtbird 314 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 0) → ¬ 2 ∥ (𝐻𝐹))
55 2z 11622 . . . . . . 7 2 ∈ ℤ
569nn0zd 11693 . . . . . . . 8 (𝜑𝐺 ∈ ℤ)
5711nn0zd 11693 . . . . . . . 8 (𝜑𝐸 ∈ ℤ)
5856, 57zsubcld 11700 . . . . . . 7 (𝜑 → (𝐺𝐸) ∈ ℤ)
59 dvdsaddr 15248 . . . . . . 7 ((2 ∈ ℤ ∧ (𝐺𝐸) ∈ ℤ) → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6055, 58, 59sylancr 698 . . . . . 6 (𝜑 → (2 ∥ (𝐺𝐸) ↔ 2 ∥ ((𝐺𝐸) + 2)))
6151, 60mtbid 313 . . . . 5 (𝜑 → ¬ 2 ∥ ((𝐺𝐸) + 2))
6261adantr 472 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ ((𝐺𝐸) + 2))
63 2cnd 11306 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
648, 13, 63subaddd 10623 . . . . . 6 (𝜑 → (((𝐻𝐹) − (𝐺𝐸)) = 2 ↔ ((𝐺𝐸) + 2) = (𝐻𝐹)))
6564biimpa 502 . . . . 5 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ((𝐺𝐸) + 2) = (𝐻𝐹))
6665breq2d 4817 . . . 4 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → (2 ∥ ((𝐺𝐸) + 2) ↔ 2 ∥ (𝐻𝐹)))
6762, 66mtbid 313 . . 3 ((𝜑 ∧ ((𝐻𝐹) − (𝐺𝐸)) = 2) → ¬ 2 ∥ (𝐻𝐹))
6854, 67, 49mpjaodan 862 . 2 (𝜑 → ¬ 2 ∥ (𝐻𝐹))
6950, 68jca 555 1 (𝜑 → (𝐹 < 𝐻 ∧ ¬ 2 ∥ (𝐻𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2140  {cpr 4324   class class class wbr 4805  (class class class)co 6815  cr 10148  0cc0 10149   + caddc 10152   < clt 10287  cmin 10479  2c2 11283  0cn0 11505  cz 11590  cdvds 15203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-n0 11506  df-z 11591  df-dvds 15204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator