![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signshlen | Structured version Visualization version GIF version |
Description: Length of 𝐻, corresponding to the word 𝐹 multiplied by (𝑥 − 𝐶). (Contributed by Thierry Arnoux, 14-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
signs.h | ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘𝑓 − ((𝐹 ++ 〈“0”〉)∘𝑓/𝑐 · 𝐶)) |
Ref | Expression |
---|---|
signshlen | ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
2 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
3 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
4 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
5 | signs.h | . . . 4 ⊢ 𝐻 = ((〈“0”〉 ++ 𝐹) ∘𝑓 − ((𝐹 ++ 〈“0”〉)∘𝑓/𝑐 · 𝐶)) | |
6 | 1, 2, 3, 4, 5 | signshf 31006 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ) |
7 | ffn 6184 | . . 3 ⊢ (𝐻:(0..^((♯‘𝐹) + 1))⟶ℝ → 𝐻 Fn (0..^((♯‘𝐹) + 1))) | |
8 | hashfn 13369 | . . 3 ⊢ (𝐻 Fn (0..^((♯‘𝐹) + 1)) → (♯‘𝐻) = (♯‘(0..^((♯‘𝐹) + 1)))) | |
9 | 6, 7, 8 | 3syl 18 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = (♯‘(0..^((♯‘𝐹) + 1)))) |
10 | lencl 13523 | . . . . 5 ⊢ (𝐹 ∈ Word ℝ → (♯‘𝐹) ∈ ℕ0) | |
11 | 10 | adantr 473 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐹) ∈ ℕ0) |
12 | 1nn0 11508 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
13 | 12 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → 1 ∈ ℕ0) |
14 | 11, 13 | nn0addcld 11555 | . . 3 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → ((♯‘𝐹) + 1) ∈ ℕ0) |
15 | hashfzo0 13422 | . . 3 ⊢ (((♯‘𝐹) + 1) ∈ ℕ0 → (♯‘(0..^((♯‘𝐹) + 1))) = ((♯‘𝐹) + 1)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘(0..^((♯‘𝐹) + 1))) = ((♯‘𝐹) + 1)) |
17 | 9, 16 | eqtrd 2803 | 1 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝐶 ∈ ℝ+) → (♯‘𝐻) = ((♯‘𝐹) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1629 ∈ wcel 2143 ≠ wne 2941 ifcif 4222 {cpr 4315 {ctp 4317 〈cop 4319 ↦ cmpt 4860 Fn wfn 6025 ⟶wf 6026 ‘cfv 6030 (class class class)co 6791 ↦ cmpt2 6793 ∘𝑓 cof 7040 ℝcr 10135 0cc0 10136 1c1 10137 + caddc 10139 · cmul 10141 − cmin 10466 -cneg 10467 ℕ0cn0 11492 ℝ+crp 12034 ...cfz 12532 ..^cfzo 12672 ♯chash 13324 Word cword 13490 ++ cconcat 13492 〈“cs1 13493 sgncsgn 14037 Σcsu 14627 ndxcnx 16067 Basecbs 16070 +gcplusg 16155 Σg cgsu 16315 ∘𝑓/𝑐cofc 30498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1868 ax-4 1883 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2145 ax-9 2152 ax-10 2172 ax-11 2188 ax-12 2201 ax-13 2406 ax-ext 2749 ax-rep 4901 ax-sep 4911 ax-nul 4919 ax-pow 4970 ax-pr 5033 ax-un 7094 ax-cnex 10192 ax-resscn 10193 ax-1cn 10194 ax-icn 10195 ax-addcl 10196 ax-addrcl 10197 ax-mulcl 10198 ax-mulrcl 10199 ax-mulcom 10200 ax-addass 10201 ax-mulass 10202 ax-distr 10203 ax-i2m1 10204 ax-1ne0 10205 ax-1rid 10206 ax-rnegex 10207 ax-rrecex 10208 ax-cnre 10209 ax-pre-lttri 10210 ax-pre-lttrn 10211 ax-pre-ltadd 10212 ax-pre-mulgt0 10213 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1070 df-3an 1071 df-tru 1632 df-ex 1851 df-nf 1856 df-sb 2048 df-eu 2620 df-mo 2621 df-clab 2756 df-cleq 2762 df-clel 2765 df-nfc 2900 df-ne 2942 df-nel 3045 df-ral 3064 df-rex 3065 df-reu 3066 df-rab 3068 df-v 3350 df-sbc 3585 df-csb 3680 df-dif 3723 df-un 3725 df-in 3727 df-ss 3734 df-pss 3736 df-nul 4061 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4572 df-int 4609 df-iun 4653 df-br 4784 df-opab 4844 df-mpt 4861 df-tr 4884 df-id 5156 df-eprel 5161 df-po 5169 df-so 5170 df-fr 5207 df-we 5209 df-xp 5254 df-rel 5255 df-cnv 5256 df-co 5257 df-dm 5258 df-rn 5259 df-res 5260 df-ima 5261 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6752 df-ov 6794 df-oprab 6795 df-mpt2 6796 df-of 7042 df-om 7211 df-1st 7313 df-2nd 7314 df-wrecs 7557 df-recs 7619 df-rdg 7657 df-1o 7711 df-oadd 7715 df-er 7894 df-en 8108 df-dom 8109 df-sdom 8110 df-fin 8111 df-card 8963 df-pnf 10276 df-mnf 10277 df-xr 10278 df-ltxr 10279 df-le 10280 df-sub 10468 df-neg 10469 df-nn 11221 df-n0 11493 df-z 11578 df-uz 11888 df-rp 12035 df-fz 12533 df-fzo 12673 df-hash 13325 df-word 13498 df-concat 13500 df-s1 13501 df-ofc 30499 |
This theorem is referenced by: signshnz 31009 |
Copyright terms: Public domain | W3C validator |