Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signlem0 Structured version   Visualization version   GIF version

Theorem signlem0 30792
Description: Adding a zero as the highest coefficient does not change the parity of the sign changes. (Contributed by Thierry Arnoux, 12-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signlem0 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = (𝑉𝐹))
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑓,𝑎,𝑖,𝑗,𝑏,𝐹,𝑛   𝑇,𝑎   𝑛,𝑏,𝑇,𝑓,𝑗
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signlem0
StepHypRef Expression
1 0re 10078 . . 3 0 ∈ ℝ
2 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
3 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
4 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(#‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
5 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(#‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
62, 3, 4, 5signsvfn 30787 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 0 ∈ ℝ) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) < 0, 1, 0)))
71, 6mpan2 707 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = ((𝑉𝐹) + if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) < 0, 1, 0)))
81ltnri 10184 . . . . 5 ¬ 0 < 0
9 neg1cn 11162 . . . . . . . . 9 -1 ∈ ℂ
10 ax-1cn 10032 . . . . . . . . 9 1 ∈ ℂ
11 prssi 4385 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆ ℂ)
129, 10, 11mp2an 708 . . . . . . . 8 {-1, 1} ⊆ ℂ
13 simpl 472 . . . . . . . . . . 11 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ (Word ℝ ∖ {∅}))
14 eldifsn 4350 . . . . . . . . . . 11 (𝐹 ∈ (Word ℝ ∖ {∅}) ↔ (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
1513, 14sylib 208 . . . . . . . . . 10 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅))
16 lennncl 13357 . . . . . . . . . 10 ((𝐹 ∈ Word ℝ ∧ 𝐹 ≠ ∅) → (#‘𝐹) ∈ ℕ)
17 fzo0end 12600 . . . . . . . . . 10 ((#‘𝐹) ∈ ℕ → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
1815, 16, 173syl 18 . . . . . . . . 9 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹)))
192, 3, 4, 5signstfvcl 30778 . . . . . . . . 9 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ ((#‘𝐹) − 1) ∈ (0..^(#‘𝐹))) → ((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ {-1, 1})
2018, 19mpdan 703 . . . . . . . 8 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ {-1, 1})
2112, 20sseldi 3634 . . . . . . 7 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑇𝐹)‘((#‘𝐹) − 1)) ∈ ℂ)
2221mul01d 10273 . . . . . 6 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) = 0)
2322breq1d 4695 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) < 0 ↔ 0 < 0))
248, 23mtbiri 316 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ¬ (((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) < 0)
2524iffalsed 4130 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) < 0, 1, 0) = 0)
2625oveq2d 6706 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉𝐹) + if((((𝑇𝐹)‘((#‘𝐹) − 1)) · 0) < 0, 1, 0)) = ((𝑉𝐹) + 0))
272, 3, 4, 5signsvvf 30784 . . . . . 6 𝑉:Word ℝ⟶ℕ0
2827a1i 11 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝑉:Word ℝ⟶ℕ0)
2913eldifad 3619 . . . . 5 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → 𝐹 ∈ Word ℝ)
3028, 29ffvelrnd 6400 . . . 4 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉𝐹) ∈ ℕ0)
3130nn0cnd 11391 . . 3 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉𝐹) ∈ ℂ)
3231addid1d 10274 . 2 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → ((𝑉𝐹) + 0) = (𝑉𝐹))
337, 26, 323eqtrd 2689 1 ((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) → (𝑉‘(𝐹 ++ ⟨“0”⟩)) = (𝑉𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cdif 3604  wss 3607  c0 3948  ifcif 4119  {csn 4210  {cpr 4212  {ctp 4214  cop 4216   class class class wbr 4685  cmpt 4762  wf 5922  cfv 5926  (class class class)co 6690  cmpt2 6692  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cmin 10304  -cneg 10305  cn 11058  0cn0 11330  ...cfz 12364  ..^cfzo 12504  #chash 13157  Word cword 13323   ++ cconcat 13325  ⟨“cs1 13326  sgncsgn 13870  Σcsu 14460  ndxcnx 15901  Basecbs 15904  +gcplusg 15988   Σg cgsu 16148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-sgn 13871  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-0g 16149  df-gsum 16150  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mulg 17588  df-cntz 17796
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator