Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigarid Structured version   Visualization version   GIF version

Theorem sigarid 41553
Description: Signed area of a flat parallelogram is zero. (Contributed by Saveliy Skresanov, 20-Sep-2017.)
Hypothesis
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
Assertion
Ref Expression
sigarid (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem sigarid
StepHypRef Expression
1 sigar . . . 4 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
21sigarval 41545 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴)))
32anidms 680 . 2 (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = (ℑ‘((∗‘𝐴) · 𝐴)))
4 cjcl 14044 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 id 22 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
64, 5mulcomd 10253 . . . 4 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) = (𝐴 · (∗‘𝐴)))
7 cjmulrcl 14083 . . . 4 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ)
86, 7eqeltrd 2839 . . 3 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) ∈ ℝ)
98reim0d 14164 . 2 (𝐴 ∈ ℂ → (ℑ‘((∗‘𝐴) · 𝐴)) = 0)
103, 9eqtrd 2794 1 (𝐴 ∈ ℂ → (𝐴𝐺𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  cfv 6049  (class class class)co 6813  cmpt2 6815  cc 10126  cr 10127  0cc0 10128   · cmul 10133  ccj 14035  cim 14037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-2 11271  df-cj 14038  df-re 14039  df-im 14040
This theorem is referenced by:  sigarexp  41554  sigarcol  41559
  Copyright terms: Public domain W3C validator