Mathbox for Saveliy Skresanov < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigardiv Structured version   Visualization version   GIF version

Theorem sigardiv 41574
 Description: If signed area between vectors 𝐵 − 𝐴 and 𝐶 − 𝐴 is zero, then those vectors lie on the same line. (Contributed by Saveliy Skresanov, 22-Sep-2017.)
Hypotheses
Ref Expression
sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigardiv.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sigardiv.b (𝜑 → ¬ 𝐶 = 𝐴)
sigardiv.c (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
Assertion
Ref Expression
sigardiv (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigardiv
StepHypRef Expression
1 sigardiv.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1138 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
31simp1d 1137 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
42, 3subcld 10604 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ ℂ)
51simp3d 1139 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
65, 3subcld 10604 . . . . . 6 (𝜑 → (𝐶𝐴) ∈ ℂ)
7 sigardiv.b . . . . . . . 8 (𝜑 → ¬ 𝐶 = 𝐴)
87neqned 2939 . . . . . . 7 (𝜑𝐶𝐴)
95, 3, 8subne0d 10613 . . . . . 6 (𝜑 → (𝐶𝐴) ≠ 0)
104, 6, 9cjdivd 14182 . . . . 5 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
114cjcld 14155 . . . . . . 7 (𝜑 → (∗‘(𝐵𝐴)) ∈ ℂ)
126cjcld 14155 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ∈ ℂ)
136, 9cjne0d 14162 . . . . . . 7 (𝜑 → (∗‘(𝐶𝐴)) ≠ 0)
1411, 12, 6, 13, 9divcan5rd 11040 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) = ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))))
1511, 6mulcld 10272 . . . . . . . 8 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℂ)
16 sigar . . . . . . . . . . 11 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1716sigarval 41563 . . . . . . . . . 10 (((𝐵𝐴) ∈ ℂ ∧ (𝐶𝐴) ∈ ℂ) → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
184, 6, 17syl2anc 696 . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))))
19 sigardiv.c . . . . . . . . 9 (𝜑 → ((𝐵𝐴)𝐺(𝐶𝐴)) = 0)
2018, 19eqtr3d 2796 . . . . . . . 8 (𝜑 → (ℑ‘((∗‘(𝐵𝐴)) · (𝐶𝐴))) = 0)
2115, 20reim0bd 14159 . . . . . . 7 (𝜑 → ((∗‘(𝐵𝐴)) · (𝐶𝐴)) ∈ ℝ)
226, 12mulcomd 10273 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) = ((∗‘(𝐶𝐴)) · (𝐶𝐴)))
236cjmulrcld 14165 . . . . . . . 8 (𝜑 → ((𝐶𝐴) · (∗‘(𝐶𝐴))) ∈ ℝ)
2422, 23eqeltrrd 2840 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ∈ ℝ)
2512, 6, 13, 9mulne0d 10891 . . . . . . 7 (𝜑 → ((∗‘(𝐶𝐴)) · (𝐶𝐴)) ≠ 0)
2621, 24, 25redivcld 11065 . . . . . 6 (𝜑 → (((∗‘(𝐵𝐴)) · (𝐶𝐴)) / ((∗‘(𝐶𝐴)) · (𝐶𝐴))) ∈ ℝ)
2714, 26eqeltrrd 2840 . . . . 5 (𝜑 → ((∗‘(𝐵𝐴)) / (∗‘(𝐶𝐴))) ∈ ℝ)
2810, 27eqeltrd 2839 . . . 4 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) ∈ ℝ)
2928cjred 14185 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = (∗‘((𝐵𝐴) / (𝐶𝐴))))
304, 6, 9divcld 11013 . . . 4 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℂ)
3130cjcjd 14158 . . 3 (𝜑 → (∗‘(∗‘((𝐵𝐴) / (𝐶𝐴)))) = ((𝐵𝐴) / (𝐶𝐴)))
3229, 31eqtr3d 2796 . 2 (𝜑 → (∗‘((𝐵𝐴) / (𝐶𝐴))) = ((𝐵𝐴) / (𝐶𝐴)))
3332, 28eqeltrrd 2840 1 (𝜑 → ((𝐵𝐴) / (𝐶𝐴)) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  ‘cfv 6049  (class class class)co 6814   ↦ cmpt2 6816  ℂcc 10146  ℝcr 10147  0cc0 10148   · cmul 10153   − cmin 10478   / cdiv 10896  ∗ccj 14055  ℑcim 14057 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291  df-cj 14058  df-re 14059  df-im 14060 This theorem is referenced by:  sigarcol  41577  sharhght  41578
 Copyright terms: Public domain W3C validator