Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsyslem Structured version   Visualization version   GIF version

Theorem sigapildsyslem 30352
Description: Lemma for sigapildsys 30353. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
sigapildsyslem.n 𝑛𝜑
sigapildsyslem.1 (𝜑𝑡 ∈ (𝑃𝐿))
sigapildsyslem.2 (𝜑𝐴𝑡)
sigapildsyslem.3 (𝜑𝑁 ∈ Fin)
sigapildsyslem.4 ((𝜑𝑛𝑁) → 𝐵𝑡)
Assertion
Ref Expression
sigapildsyslem (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Distinct variable groups:   𝑛,𝑠,𝑡,𝑥,𝑦   𝑛,𝐿,𝑡,𝑥,𝑦   𝑂,𝑠,𝑡,𝑥   𝑃,𝑛,𝑡,𝑥,𝑦   𝐴,𝑛   𝑥,𝐵   𝑛,𝑁,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑡,𝑛,𝑠)   𝐴(𝑥,𝑦,𝑡,𝑠)   𝐵(𝑦,𝑡,𝑛,𝑠)   𝑃(𝑠)   𝐿(𝑠)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑦,𝑛)

Proof of Theorem sigapildsyslem
StepHypRef Expression
1 iuneq1 4566 . . . . . . 7 (𝑁 = ∅ → 𝑛𝑁 𝐵 = 𝑛 ∈ ∅ 𝐵)
2 0iun 4609 . . . . . . 7 𝑛 ∈ ∅ 𝐵 = ∅
31, 2syl6eq 2701 . . . . . 6 (𝑁 = ∅ → 𝑛𝑁 𝐵 = ∅)
43difeq2d 3761 . . . . 5 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = (𝐴 ∖ ∅))
5 dif0 3983 . . . . 5 (𝐴 ∖ ∅) = 𝐴
64, 5syl6eq 2701 . . . 4 (𝑁 = ∅ → (𝐴 𝑛𝑁 𝐵) = 𝐴)
76adantl 481 . . 3 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) = 𝐴)
8 sigapildsyslem.2 . . . 4 (𝜑𝐴𝑡)
98adantr 480 . . 3 ((𝜑𝑁 = ∅) → 𝐴𝑡)
107, 9eqeltrd 2730 . 2 ((𝜑𝑁 = ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
11 iindif2 4621 . . . 4 (𝑁 ≠ ∅ → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
1211adantl 481 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) = (𝐴 𝑛𝑁 𝐵))
13 sigapildsyslem.1 . . . . . . . 8 (𝜑𝑡 ∈ (𝑃𝐿))
1413adantr 480 . . . . . . 7 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ (𝑃𝐿))
1514elin1d 3835 . . . . . 6 ((𝜑𝑁 ≠ ∅) → 𝑡𝑃)
16 dynkin.p . . . . . . 7 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
1716ispisys 30343 . . . . . 6 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1815, 17sylib 208 . . . . 5 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
1918simprd 478 . . . 4 ((𝜑𝑁 ≠ ∅) → (fi‘𝑡) ⊆ 𝑡)
20 sigapildsyslem.n . . . . . . 7 𝑛𝜑
21 nfv 1883 . . . . . . 7 𝑛 𝑁 ≠ ∅
2220, 21nfan 1868 . . . . . 6 𝑛(𝜑𝑁 ≠ ∅)
2318simpld 474 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → 𝑡 ∈ 𝒫 𝒫 𝑂)
2423elpwid 4203 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝑡 ⊆ 𝒫 𝑂)
258adantr 480 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → 𝐴𝑡)
2624, 25sseldd 3637 . . . . . . . . . . 11 ((𝜑𝑁 ≠ ∅) → 𝐴 ∈ 𝒫 𝑂)
2726elpwid 4203 . . . . . . . . . 10 ((𝜑𝑁 ≠ ∅) → 𝐴𝑂)
2827adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑂)
29 difin2 3923 . . . . . . . . 9 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3028, 29syl 17 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
3119adantr 480 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (fi‘𝑡) ⊆ 𝑡)
3214adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝑡 ∈ (𝑃𝐿))
3314elin2d 3836 . . . . . . . . . . . . . . 15 ((𝜑𝑁 ≠ ∅) → 𝑡𝐿)
34 dynkin.l . . . . . . . . . . . . . . . 16 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
3534isldsys 30347 . . . . . . . . . . . . . . 15 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3633, 35sylib 208 . . . . . . . . . . . . . 14 ((𝜑𝑁 ≠ ∅) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
3736simprd 478 . . . . . . . . . . . . 13 ((𝜑𝑁 ≠ ∅) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
3837simp2d 1094 . . . . . . . . . . . 12 ((𝜑𝑁 ≠ ∅) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3938adantr 480 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
40 sigapildsyslem.4 . . . . . . . . . . . . 13 ((𝜑𝑛𝑁) → 𝐵𝑡)
4140adantlr 751 . . . . . . . . . . . 12 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐵𝑡)
42 nfv 1883 . . . . . . . . . . . . 13 𝑥(𝑂𝐵) ∈ 𝑡
43 difeq2 3755 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝑂𝑥) = (𝑂𝐵))
4443eleq1d 2715 . . . . . . . . . . . . 13 (𝑥 = 𝐵 → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂𝐵) ∈ 𝑡))
4542, 44rspc 3334 . . . . . . . . . . . 12 (𝐵𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4641, 45syl 17 . . . . . . . . . . 11 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂𝐵) ∈ 𝑡))
4739, 46mpd 15 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝑂𝐵) ∈ 𝑡)
4825adantr 480 . . . . . . . . . 10 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → 𝐴𝑡)
49 inelfi 8365 . . . . . . . . . 10 ((𝑡 ∈ (𝑃𝐿) ∧ (𝑂𝐵) ∈ 𝑡𝐴𝑡) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5032, 47, 48, 49syl3anc 1366 . . . . . . . . 9 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ (fi‘𝑡))
5131, 50sseldd 3637 . . . . . . . 8 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → ((𝑂𝐵) ∩ 𝐴) ∈ 𝑡)
5230, 51eqeltrd 2730 . . . . . . 7 (((𝜑𝑁 ≠ ∅) ∧ 𝑛𝑁) → (𝐴𝐵) ∈ 𝑡)
5352ex 449 . . . . . 6 ((𝜑𝑁 ≠ ∅) → (𝑛𝑁 → (𝐴𝐵) ∈ 𝑡))
5422, 53ralrimi 2986 . . . . 5 ((𝜑𝑁 ≠ ∅) → ∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
55 simpr 476 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ≠ ∅)
56 sigapildsyslem.3 . . . . . 6 (𝜑𝑁 ∈ Fin)
5756adantr 480 . . . . 5 ((𝜑𝑁 ≠ ∅) → 𝑁 ∈ Fin)
58 vex 3234 . . . . . 6 𝑡 ∈ V
59 iinfi 8364 . . . . . 6 ((𝑡 ∈ V ∧ (∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin)) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6058, 59mpan 706 . . . . 5 ((∀𝑛𝑁 (𝐴𝐵) ∈ 𝑡𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6154, 55, 57, 60syl3anc 1366 . . . 4 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ (fi‘𝑡))
6219, 61sseldd 3637 . . 3 ((𝜑𝑁 ≠ ∅) → 𝑛𝑁 (𝐴𝐵) ∈ 𝑡)
6312, 62eqeltrrd 2731 . 2 ((𝜑𝑁 ≠ ∅) → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
6410, 63pm2.61dane 2910 1 (𝜑 → (𝐴 𝑛𝑁 𝐵) ∈ 𝑡)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wnf 1748  wcel 2030  wne 2823  wral 2941  {crab 2945  Vcvv 3231  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191   cuni 4468   ciun 4552   ciin 4553  Disj wdisj 4652   class class class wbr 4685  cfv 5926  ωcom 7107  cdom 7995  Fincfn 7997  ficfi 8357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-fin 8001  df-fi 8358
This theorem is referenced by:  sigapildsys  30353
  Copyright terms: Public domain W3C validator