Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigapildsys Structured version   Visualization version   GIF version

Theorem sigapildsys 30353
 Description: Sigma-algebra are exactly classes which are both lambda and pi-systems. (Contributed by Thierry Arnoux, 13-Jun-2020.)
Hypotheses
Ref Expression
dynkin.p 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
dynkin.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
Assertion
Ref Expression
sigapildsys (sigAlgebra‘𝑂) = (𝑃𝐿)
Distinct variable groups:   𝑥,𝑠,𝑦   𝑥,𝐿,𝑦   𝑂,𝑠,𝑥   𝑥,𝑃,𝑦
Allowed substitution hints:   𝑃(𝑠)   𝐿(𝑠)   𝑂(𝑦)

Proof of Theorem sigapildsys
Dummy variables 𝑓 𝑖 𝑛 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dynkin.p . . . 4 𝑃 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (fi‘𝑠) ⊆ 𝑠}
21sigapisys 30346 . . 3 (sigAlgebra‘𝑂) ⊆ 𝑃
3 dynkin.l . . . 4 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
43sigaldsys 30350 . . 3 (sigAlgebra‘𝑂) ⊆ 𝐿
52, 4ssini 3869 . 2 (sigAlgebra‘𝑂) ⊆ (𝑃𝐿)
6 id 22 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (𝑃𝐿))
76elin1d 3835 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → 𝑡𝑃)
81ispisys 30343 . . . . . . . 8 (𝑡𝑃 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
97, 8sylib 208 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (fi‘𝑡) ⊆ 𝑡))
109simpld 474 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ 𝒫 𝒫 𝑂)
1110elpwid 4203 . . . . 5 (𝑡 ∈ (𝑃𝐿) → 𝑡 ⊆ 𝒫 𝑂)
12 dif0 3983 . . . . . . 7 (𝑂 ∖ ∅) = 𝑂
136elin2d 3836 . . . . . . . . . . 11 (𝑡 ∈ (𝑃𝐿) → 𝑡𝐿)
143isldsys 30347 . . . . . . . . . . 11 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1513, 14sylib 208 . . . . . . . . . 10 (𝑡 ∈ (𝑃𝐿) → (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1615simprd 478 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1716simp2d 1094 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
1816simp1d 1093 . . . . . . . . 9 (𝑡 ∈ (𝑃𝐿) → ∅ ∈ 𝑡)
19 difeq2 3755 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ∖ ∅))
20 eqidd 2652 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑡 = 𝑡)
2119, 20eleq12d 2724 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑂𝑥) ∈ 𝑡 ↔ (𝑂 ∖ ∅) ∈ 𝑡))
2221rspcv 3336 . . . . . . . . 9 (∅ ∈ 𝑡 → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2318, 22syl 17 . . . . . . . 8 (𝑡 ∈ (𝑃𝐿) → (∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 → (𝑂 ∖ ∅) ∈ 𝑡))
2417, 23mpd 15 . . . . . . 7 (𝑡 ∈ (𝑃𝐿) → (𝑂 ∖ ∅) ∈ 𝑡)
2512, 24syl5eqelr 2735 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → 𝑂𝑡)
26 unieq 4476 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
27 uni0 4497 . . . . . . . . . . . 12 ∅ = ∅
2826, 27syl6eq 2701 . . . . . . . . . . 11 (𝑥 = ∅ → 𝑥 = ∅)
2928adantl 481 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥 = ∅)
3018ad3antrrr 766 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → ∅ ∈ 𝑡)
3129, 30eqeltrd 2730 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → 𝑥𝑡)
32 vex 3234 . . . . . . . . . . . . . 14 𝑥 ∈ V
33320sdom 8132 . . . . . . . . . . . . 13 (∅ ≺ 𝑥𝑥 ≠ ∅)
3433biimpri 218 . . . . . . . . . . . 12 (𝑥 ≠ ∅ → ∅ ≺ 𝑥)
3534adantl 481 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∅ ≺ 𝑥)
36 simplr 807 . . . . . . . . . . . 12 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ω)
37 nnenom 12819 . . . . . . . . . . . . 13 ℕ ≈ ω
3837ensymi 8047 . . . . . . . . . . . 12 ω ≈ ℕ
39 domentr 8056 . . . . . . . . . . . 12 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
4036, 38, 39sylancl 695 . . . . . . . . . . 11 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥 ≼ ℕ)
41 fodomr 8152 . . . . . . . . . . 11 ((∅ ≺ 𝑥𝑥 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto𝑥)
4235, 40, 41syl2anc 694 . . . . . . . . . 10 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto𝑥)
43 fveq2 6229 . . . . . . . . . . . . . 14 (𝑛 = 𝑖 → (𝑓𝑛) = (𝑓𝑖))
4443iundisj 23362 . . . . . . . . . . . . 13 𝑛 ∈ ℕ (𝑓𝑛) = 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
45 fofn 6155 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥𝑓 Fn ℕ)
46 fniunfv 6545 . . . . . . . . . . . . . . 15 (𝑓 Fn ℕ → 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = ran 𝑓)
48 forn 6156 . . . . . . . . . . . . . . 15 (𝑓:ℕ–onto𝑥 → ran 𝑓 = 𝑥)
4948unieqd 4478 . . . . . . . . . . . . . 14 (𝑓:ℕ–onto𝑥 ran 𝑓 = 𝑥)
5047, 49eqtrd 2685 . . . . . . . . . . . . 13 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ (𝑓𝑛) = 𝑥)
5144, 50syl5eqr 2699 . . . . . . . . . . . 12 (𝑓:ℕ–onto𝑥 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
5251adantl 481 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = 𝑥)
53 fvex 6239 . . . . . . . . . . . . . 14 (𝑓𝑛) ∈ V
54 difexg 4841 . . . . . . . . . . . . . 14 ((𝑓𝑛) ∈ V → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V)
5553, 54ax-mp 5 . . . . . . . . . . . . 13 ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ V
5655dfiun3 5412 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
57 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑛((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
58 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑛𝑦
59 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . 20 𝑛(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6059nfrn 5400 . . . . . . . . . . . . . . . . . . 19 𝑛ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6158, 60nfel 2806 . . . . . . . . . . . . . . . . . 18 𝑛 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
6257, 61nfan 1868 . . . . . . . . . . . . . . . . 17 𝑛(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
63 simpr 476 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
64 nfv 1883 . . . . . . . . . . . . . . . . . . . . . 22 𝑖((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥)
65 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖𝑦
66 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖
67 nfcv 2793 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖(𝑓𝑛)
68 nfiu1 4582 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑖 𝑖 ∈ (1..^𝑛)(𝑓𝑖)
6967, 68nfdif 3764 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑖((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7066, 69nfmpt 4779 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑖(𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7170nfrn 5400 . . . . . . . . . . . . . . . . . . . . . . 23 𝑖ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7265, 71nfel 2806 . . . . . . . . . . . . . . . . . . . . . 22 𝑖 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
7364, 72nfan 1868 . . . . . . . . . . . . . . . . . . . . 21 𝑖(((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
74 nfv 1883 . . . . . . . . . . . . . . . . . . . . 21 𝑖 𝑛 ∈ ℕ
7573, 74nfan 1868 . . . . . . . . . . . . . . . . . . . 20 𝑖((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ)
7665, 69nfeq 2805 . . . . . . . . . . . . . . . . . . . 20 𝑖 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
7775, 76nfan 1868 . . . . . . . . . . . . . . . . . . 19 𝑖(((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
786ad7antr 781 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑡 ∈ (𝑃𝐿))
79 simp-4r 824 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥 ∈ 𝒫 𝑡)
8079ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 ∈ 𝒫 𝑡)
8180elpwid 4203 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥𝑡)
82 fof 6153 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℕ–onto𝑥𝑓:ℕ⟶𝑥)
8382ad4antlr 771 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑓:ℕ⟶𝑥)
84 simplr 807 . . . . . . . . . . . . . . . . . . . . 21 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑛 ∈ ℕ)
8583, 84ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . 20 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑥)
8681, 85sseldd 3637 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑓𝑛) ∈ 𝑡)
87 fzofi 12813 . . . . . . . . . . . . . . . . . . . 20 (1..^𝑛) ∈ Fin
8887a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ∈ Fin)
8981adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑥𝑡)
9083adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑓:ℕ⟶𝑥)
91 fzossnn 12556 . . . . . . . . . . . . . . . . . . . . . . 23 (1..^𝑛) ⊆ ℕ
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (1..^𝑛) ⊆ ℕ)
9392sselda 3636 . . . . . . . . . . . . . . . . . . . . 21 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → 𝑖 ∈ ℕ)
9490, 93ffvelrnd 6400 . . . . . . . . . . . . . . . . . . . 20 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑥)
9589, 94sseldd 3637 . . . . . . . . . . . . . . . . . . 19 (((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∧ 𝑖 ∈ (1..^𝑛)) → (𝑓𝑖) ∈ 𝑡)
961, 3, 77, 78, 86, 88, 95sigapildsyslem 30352 . . . . . . . . . . . . . . . . . 18 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
9763, 96eqeltrd 2730 . . . . . . . . . . . . . . . . 17 ((((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) ∧ 𝑛 ∈ ℕ) ∧ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡)
98 simpr 476 . . . . . . . . . . . . . . . . . 18 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
99 eqid 2651 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) = (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10099, 55elrnmpti 5408 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ↔ ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10198, 100sylib 208 . . . . . . . . . . . . . . . . 17 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → ∃𝑛 ∈ ℕ 𝑦 = ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))
10262, 97, 101r19.29af 3105 . . . . . . . . . . . . . . . 16 ((((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) ∧ 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))) → 𝑦𝑡)
103102ex 449 . . . . . . . . . . . . . . 15 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → (𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑦𝑡))
104103ssrdv 3642 . . . . . . . . . . . . . 14 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
105 nnex 11064 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
106105mptex 6527 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
107106rnex 7142 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V
108 elpwg 4199 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ V → (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡))
109107, 108ax-mp 5 . . . . . . . . . . . . . 14 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ⊆ 𝑡)
110104, 109sylibr 224 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡)
11116simp3d 1095 . . . . . . . . . . . . . 14 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
112111ad4antr 769 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
113 nnct 12820 . . . . . . . . . . . . . . 15 ℕ ≼ ω
114 mptct 9398 . . . . . . . . . . . . . . 15 (ℕ ≼ ω → (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
115113, 114ax-mp 5 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω
116 rnct 9385 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
117115, 116mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω)
11843iundisj2 23363 . . . . . . . . . . . . . 14 Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))
119 disjrnmpt 29524 . . . . . . . . . . . . . 14 (Disj 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
120118, 119mp1i 13 . . . . . . . . . . . . 13 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)
121 breq1 4688 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (𝑥 ≼ ω ↔ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω))
122 disjeq1 4659 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (Disj 𝑦𝑥 𝑦Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦))
123121, 122anbi12d 747 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) ↔ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)))
124 unieq 4476 . . . . . . . . . . . . . . . . . 18 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → 𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))))
125124eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → ( 𝑥𝑡 ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
126123, 125imbi12d 333 . . . . . . . . . . . . . . . 16 (𝑥 = ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) → (((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) ↔ ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
127126rspcv 3336 . . . . . . . . . . . . . . 15 (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 → (∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)))
128127imp 444 . . . . . . . . . . . . . 14 ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) → ((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡))
129128imp 444 . . . . . . . . . . . . 13 (((ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝒫 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)) ∧ (ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ≼ ω ∧ Disj 𝑦 ∈ ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)))𝑦)) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
130110, 112, 117, 120, 129syl22anc 1367 . . . . . . . . . . . 12 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → ran (𝑛 ∈ ℕ ↦ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖))) ∈ 𝑡)
13156, 130syl5eqel 2734 . . . . . . . . . . 11 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑛 ∈ ℕ ((𝑓𝑛) ∖ 𝑖 ∈ (1..^𝑛)(𝑓𝑖)) ∈ 𝑡)
13252, 131eqeltrrd 2731 . . . . . . . . . 10 (((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) ∧ 𝑓:ℕ–onto𝑥) → 𝑥𝑡)
13342, 132exlimddv 1903 . . . . . . . . 9 ((((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → 𝑥𝑡)
13431, 133pm2.61dane 2910 . . . . . . . 8 (((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) ∧ 𝑥 ≼ ω) → 𝑥𝑡)
135134ex 449 . . . . . . 7 ((𝑡 ∈ (𝑃𝐿) ∧ 𝑥 ∈ 𝒫 𝑡) → (𝑥 ≼ ω → 𝑥𝑡))
136135ralrimiva 2995 . . . . . 6 (𝑡 ∈ (𝑃𝐿) → ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))
13725, 17, 1363jca 1261 . . . . 5 (𝑡 ∈ (𝑃𝐿) → (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))
13811, 137jca 553 . . . 4 (𝑡 ∈ (𝑃𝐿) → (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
139 vex 3234 . . . . 5 𝑡 ∈ V
140 issiga 30302 . . . . 5 (𝑡 ∈ V → (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡)))))
141139, 140ax-mp 5 . . . 4 (𝑡 ∈ (sigAlgebra‘𝑂) ↔ (𝑡 ⊆ 𝒫 𝑂 ∧ (𝑂𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡(𝑥 ≼ ω → 𝑥𝑡))))
142138, 141sylibr 224 . . 3 (𝑡 ∈ (𝑃𝐿) → 𝑡 ∈ (sigAlgebra‘𝑂))
143142ssriv 3640 . 2 (𝑃𝐿) ⊆ (sigAlgebra‘𝑂)
1445, 143eqssi 3652 1 (sigAlgebra‘𝑂) = (𝑃𝐿)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945  Vcvv 3231   ∖ cdif 3604   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  ∪ cuni 4468  ∪ ciun 4552  Disj wdisj 4652   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144   Fn wfn 5921  ⟶wf 5922  –onto→wfo 5924  ‘cfv 5926  (class class class)co 6690  ωcom 7107   ≈ cen 7994   ≼ cdom 7995   ≺ csdm 7996  Fincfn 7997  ficfi 8357  1c1 9975  ℕcn 11058  ..^cfzo 12504  sigAlgebracsiga 30298 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-siga 30299 This theorem is referenced by:  dynkin  30358
 Copyright terms: Public domain W3C validator