Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigainb Structured version   Visualization version   GIF version

Theorem sigainb 30529
Description: Building a sigma-algebra from intersections with a given set. (Contributed by Thierry Arnoux, 26-Dec-2016.)
Assertion
Ref Expression
sigainb ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))

Proof of Theorem sigainb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inex1g 4953 . . 3 (𝑆 ran sigAlgebra → (𝑆 ∩ 𝒫 𝐴) ∈ V)
21adantr 472 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ V)
3 inss2 3977 . . 3 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
43a1i 11 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴)
5 simpr 479 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴𝑆)
6 pwidg 4317 . . . . 5 (𝐴𝑆𝐴 ∈ 𝒫 𝐴)
75, 6syl 17 . . . 4 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ 𝒫 𝐴)
85, 7elind 3941 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → 𝐴 ∈ (𝑆 ∩ 𝒫 𝐴))
9 simpll 807 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑆 ran sigAlgebra)
10 simplr 809 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝐴𝑆)
11 inss1 3976 . . . . . . 7 (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆
12 simpr 479 . . . . . . 7 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
1311, 12sseldi 3742 . . . . . 6 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → 𝑥𝑆)
14 difelsiga 30526 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝑥𝑆) → (𝐴𝑥) ∈ 𝑆)
159, 10, 13, 14syl3anc 1477 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝑆)
16 difss 3880 . . . . . . 7 (𝐴𝑥) ⊆ 𝐴
17 elpwg 4310 . . . . . . 7 ((𝐴𝑥) ∈ 𝑆 → ((𝐴𝑥) ∈ 𝒫 𝐴 ↔ (𝐴𝑥) ⊆ 𝐴))
1816, 17mpbiri 248 . . . . . 6 ((𝐴𝑥) ∈ 𝑆 → (𝐴𝑥) ∈ 𝒫 𝐴)
1915, 18syl 17 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ 𝒫 𝐴)
2015, 19elind 3941 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)) → (𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
2120ralrimiva 3104 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴))
22 simplll 815 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑆 ran sigAlgebra)
23 simplr 809 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴))
24 elpwi 4312 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴))
25 sstr 3752 . . . . . . . . . 10 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝑆) → 𝑥𝑆)
2611, 25mpan2 709 . . . . . . . . 9 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥𝑆)
2723, 24, 263syl 18 . . . . . . . 8 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
28 elpwg 4310 . . . . . . . . 9 (𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) → (𝑥 ∈ 𝒫 𝑆𝑥𝑆))
2928biimpar 503 . . . . . . . 8 ((𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴) ∧ 𝑥𝑆) → 𝑥 ∈ 𝒫 𝑆)
3023, 27, 29syl2anc 696 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝑆)
31 simpr 479 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω)
32 sigaclcu 30510 . . . . . . 7 ((𝑆 ran sigAlgebra ∧ 𝑥 ∈ 𝒫 𝑆𝑥 ≼ ω) → 𝑥𝑆)
3322, 30, 31, 32syl3anc 1477 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥𝑆)
34 sstr 3752 . . . . . . . . 9 ((𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) ∧ (𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
353, 34mpan2 709 . . . . . . . 8 (𝑥 ⊆ (𝑆 ∩ 𝒫 𝐴) → 𝑥 ⊆ 𝒫 𝐴)
3623, 24, 353syl 18 . . . . . . 7 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ⊆ 𝒫 𝐴)
37 sspwuni 4763 . . . . . . . 8 (𝑥 ⊆ 𝒫 𝐴 𝑥𝐴)
38 vuniex 7120 . . . . . . . . 9 𝑥 ∈ V
3938elpw 4308 . . . . . . . 8 ( 𝑥 ∈ 𝒫 𝐴 𝑥𝐴)
4037, 39bitr4i 267 . . . . . . 7 (𝑥 ⊆ 𝒫 𝐴 𝑥 ∈ 𝒫 𝐴)
4136, 40sylib 208 . . . . . 6 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ 𝒫 𝐴)
4233, 41elind 3941 . . . . 5 ((((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) ∧ 𝑥 ≼ ω) → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))
4342ex 449 . . . 4 (((𝑆 ran sigAlgebra ∧ 𝐴𝑆) ∧ 𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)) → (𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
4443ralrimiva 3104 . . 3 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)))
458, 21, 443jca 1123 . 2 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))
46 issiga 30504 . . 3 ((𝑆 ∩ 𝒫 𝐴) ∈ V → ((𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴) ↔ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))))
4746biimpar 503 . 2 (((𝑆 ∩ 𝒫 𝐴) ∈ V ∧ ((𝑆 ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (𝐴 ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ (𝑆 ∩ 𝒫 𝐴)(𝐴𝑥) ∈ (𝑆 ∩ 𝒫 𝐴) ∧ ∀𝑥 ∈ 𝒫 (𝑆 ∩ 𝒫 𝐴)(𝑥 ≼ ω → 𝑥 ∈ (𝑆 ∩ 𝒫 𝐴))))) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
482, 4, 45, 47syl12anc 1475 1 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆) → (𝑆 ∩ 𝒫 𝐴) ∈ (sigAlgebra‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072  wcel 2139  wral 3050  Vcvv 3340  cdif 3712  cin 3714  wss 3715  𝒫 cpw 4302   cuni 4588   class class class wbr 4804  ran crn 5267  cfv 6049  ωcom 7231  cdom 8121  sigAlgebracsiga 30500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-ac2 9497
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-oi 8582  df-card 8975  df-acn 8978  df-ac 9149  df-cda 9202  df-siga 30501
This theorem is referenced by:  measinb2  30616
  Copyright terms: Public domain W3C validator