![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagensiga | Structured version Visualization version GIF version |
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
sigagensiga | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigagenval 30504 | . 2 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | |
2 | fvex 6354 | . . . . 5 ⊢ (sigaGen‘𝐴) ∈ V | |
3 | 1, 2 | syl6eqelr 2840 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
4 | intex 4961 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
5 | 3, 4 | sylibr 224 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
6 | ssrab2 3820 | . . . . 5 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴) | |
7 | 6 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
8 | fvex 6354 | . . . . 5 ⊢ (sigAlgebra‘∪ 𝐴) ∈ V | |
9 | 8 | elpw2 4969 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ⊆ (sigAlgebra‘∪ 𝐴)) |
10 | 7, 9 | sylibr 224 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) |
11 | insiga 30501 | . . 3 ⊢ (({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ 𝒫 (sigAlgebra‘∪ 𝐴)) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) | |
12 | 5, 10, 11 | syl2anc 696 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ (sigAlgebra‘∪ 𝐴)) |
13 | 1, 12 | eqeltrd 2831 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2131 ≠ wne 2924 {crab 3046 Vcvv 3332 ⊆ wss 3707 ∅c0 4050 𝒫 cpw 4294 ∪ cuni 4580 ∩ cint 4619 ‘cfv 6041 sigAlgebracsiga 30471 sigaGencsigagen 30502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-int 4620 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fv 6049 df-siga 30472 df-sigagen 30503 |
This theorem is referenced by: sgsiga 30506 unisg 30507 sigagenss2 30514 brsiga 30547 brsigarn 30548 cldssbrsiga 30551 sxsiga 30555 cnmbfm 30626 sxbrsiga 30653 |
Copyright terms: Public domain | W3C validator |