Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagensiga Structured version   Visualization version   GIF version

Theorem sigagensiga 30505
Description: A generated sigma-algebra is a sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagensiga (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))

Proof of Theorem sigagensiga
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 sigagenval 30504 . 2 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
2 fvex 6354 . . . . 5 (sigaGen‘𝐴) ∈ V
31, 2syl6eqelr 2840 . . . 4 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
4 intex 4961 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
53, 4sylibr 224 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
6 ssrab2 3820 . . . . 5 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴)
76a1i 11 . . . 4 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
8 fvex 6354 . . . . 5 (sigAlgebra‘ 𝐴) ∈ V
98elpw2 4969 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴) ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ⊆ (sigAlgebra‘ 𝐴))
107, 9sylibr 224 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴))
11 insiga 30501 . . 3 (({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ∧ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ 𝒫 (sigAlgebra‘ 𝐴)) → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
125, 10, 11syl2anc 696 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ (sigAlgebra‘ 𝐴))
131, 12eqeltrd 2831 1 (𝐴𝑉 → (sigaGen‘𝐴) ∈ (sigAlgebra‘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2131  wne 2924  {crab 3046  Vcvv 3332  wss 3707  c0 4050  𝒫 cpw 4294   cuni 4580   cint 4619  cfv 6041  sigAlgebracsiga 30471  sigaGencsigagen 30502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-int 4620  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-iota 6004  df-fun 6043  df-fv 6049  df-siga 30472  df-sigagen 30503
This theorem is referenced by:  sgsiga  30506  unisg  30507  sigagenss2  30514  brsiga  30547  brsigarn  30548  cldssbrsiga  30551  sxsiga  30555  cnmbfm  30626  sxbrsiga  30653
  Copyright terms: Public domain W3C validator