![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sibfrn | Structured version Visualization version GIF version |
Description: A simple function has finite range. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
sitgval.b | ⊢ 𝐵 = (Base‘𝑊) |
sitgval.j | ⊢ 𝐽 = (TopOpen‘𝑊) |
sitgval.s | ⊢ 𝑆 = (sigaGen‘𝐽) |
sitgval.0 | ⊢ 0 = (0g‘𝑊) |
sitgval.x | ⊢ · = ( ·𝑠 ‘𝑊) |
sitgval.h | ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) |
sitgval.1 | ⊢ (𝜑 → 𝑊 ∈ 𝑉) |
sitgval.2 | ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) |
sibfmbl.1 | ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) |
Ref | Expression |
---|---|
sibfrn | ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sibfmbl.1 | . . 3 ⊢ (𝜑 → 𝐹 ∈ dom (𝑊sitg𝑀)) | |
2 | sitgval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | sitgval.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝑊) | |
4 | sitgval.s | . . . 4 ⊢ 𝑆 = (sigaGen‘𝐽) | |
5 | sitgval.0 | . . . 4 ⊢ 0 = (0g‘𝑊) | |
6 | sitgval.x | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
7 | sitgval.h | . . . 4 ⊢ 𝐻 = (ℝHom‘(Scalar‘𝑊)) | |
8 | sitgval.1 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ 𝑉) | |
9 | sitgval.2 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ∪ ran measures) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | issibf 30726 | . . 3 ⊢ (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞)))) |
11 | 1, 10 | mpbid 222 | . 2 ⊢ (𝜑 → (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(◡𝐹 “ {𝑥})) ∈ (0[,)+∞))) |
12 | 11 | simp2d 1138 | 1 ⊢ (𝜑 → ran 𝐹 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ∖ cdif 3713 {csn 4322 ∪ cuni 4589 ◡ccnv 5266 dom cdm 5267 ran crn 5268 “ cima 5270 ‘cfv 6050 (class class class)co 6815 Fincfn 8124 0cc0 10149 +∞cpnf 10284 [,)cico 12391 Basecbs 16080 Scalarcsca 16167 ·𝑠 cvsca 16168 TopOpenctopn 16305 0gc0g 16323 ℝHomcrrh 30368 sigaGencsigagen 30532 measurescmeas 30589 MblFnMcmbfm 30643 sitgcsitg 30722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-sitg 30723 |
This theorem is referenced by: sibfof 30733 sitgfval 30734 sitgclg 30735 |
Copyright terms: Public domain | W3C validator |