![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shunssi | Structured version Visualization version GIF version |
Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl.1 | ⊢ 𝐴 ∈ Sℋ |
shincl.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shunssi | ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shincl.1 | . . . . . . 7 ⊢ 𝐴 ∈ Sℋ | |
2 | 1 | sheli 28405 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ) |
3 | ax-hvaddid 28195 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (𝑥 +ℎ 0ℎ) = 𝑥) | |
4 | 3 | eqcomd 2776 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 = (𝑥 +ℎ 0ℎ)) |
5 | 2, 4 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → 𝑥 = (𝑥 +ℎ 0ℎ)) |
6 | shincl.2 | . . . . . . 7 ⊢ 𝐵 ∈ Sℋ | |
7 | sh0 28407 | . . . . . . 7 ⊢ (𝐵 ∈ Sℋ → 0ℎ ∈ 𝐵) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ 0ℎ ∈ 𝐵 |
9 | rspceov 6836 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 0ℎ ∈ 𝐵 ∧ 𝑥 = (𝑥 +ℎ 0ℎ)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) | |
10 | 8, 9 | mp3an2 1559 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = (𝑥 +ℎ 0ℎ)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
11 | 5, 10 | mpdan 659 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
12 | 6 | sheli 28405 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → 𝑥 ∈ ℋ) |
13 | hvaddid2 28214 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (0ℎ +ℎ 𝑥) = 𝑥) | |
14 | 13 | eqcomd 2776 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 = (0ℎ +ℎ 𝑥)) |
15 | 12, 14 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → 𝑥 = (0ℎ +ℎ 𝑥)) |
16 | sh0 28407 | . . . . . . 7 ⊢ (𝐴 ∈ Sℋ → 0ℎ ∈ 𝐴) | |
17 | 1, 16 | ax-mp 5 | . . . . . 6 ⊢ 0ℎ ∈ 𝐴 |
18 | rspceov 6836 | . . . . . 6 ⊢ ((0ℎ ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 = (0ℎ +ℎ 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) | |
19 | 17, 18 | mp3an1 1558 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 = (0ℎ +ℎ 𝑥)) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
20 | 15, 19 | mpdan 659 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
21 | 11, 20 | jaoi 837 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
22 | elun 3902 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
23 | 1, 6 | shseli 28509 | . . 3 ⊢ (𝑥 ∈ (𝐴 +ℋ 𝐵) ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +ℎ 𝑧)) |
24 | 21, 22, 23 | 3imtr4i 281 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ (𝐴 +ℋ 𝐵)) |
25 | 24 | ssriv 3754 | 1 ⊢ (𝐴 ∪ 𝐵) ⊆ (𝐴 +ℋ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 826 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 ∪ cun 3719 ⊆ wss 3721 (class class class)co 6792 ℋchil 28110 +ℎ cva 28111 0ℎc0v 28115 Sℋ csh 28119 +ℋ cph 28122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-hilex 28190 ax-hfvadd 28191 ax-hvcom 28192 ax-hvass 28193 ax-hv0cl 28194 ax-hvaddid 28195 ax-hfvmul 28196 ax-hvmulid 28197 ax-hvdistr2 28200 ax-hvmul0 28201 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-sub 10469 df-neg 10470 df-grpo 27681 df-ablo 27733 df-hvsub 28162 df-sh 28398 df-shs 28501 |
This theorem is referenced by: shsval2i 28580 shjshsi 28685 spanuni 28737 |
Copyright terms: Public domain | W3C validator |