HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shunssi Structured version   Visualization version   GIF version

Theorem shunssi 28561
Description: Union is smaller than subspace sum. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
shincl.1 𝐴S
shincl.2 𝐵S
Assertion
Ref Expression
shunssi (𝐴𝐵) ⊆ (𝐴 + 𝐵)

Proof of Theorem shunssi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shincl.1 . . . . . . 7 𝐴S
21sheli 28405 . . . . . 6 (𝑥𝐴𝑥 ∈ ℋ)
3 ax-hvaddid 28195 . . . . . . 7 (𝑥 ∈ ℋ → (𝑥 + 0) = 𝑥)
43eqcomd 2776 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 = (𝑥 + 0))
52, 4syl 17 . . . . 5 (𝑥𝐴𝑥 = (𝑥 + 0))
6 shincl.2 . . . . . . 7 𝐵S
7 sh0 28407 . . . . . . 7 (𝐵S → 0𝐵)
86, 7ax-mp 5 . . . . . 6 0𝐵
9 rspceov 6836 . . . . . 6 ((𝑥𝐴 ∧ 0𝐵𝑥 = (𝑥 + 0)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
108, 9mp3an2 1559 . . . . 5 ((𝑥𝐴𝑥 = (𝑥 + 0)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
115, 10mpdan 659 . . . 4 (𝑥𝐴 → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
126sheli 28405 . . . . . 6 (𝑥𝐵𝑥 ∈ ℋ)
13 hvaddid2 28214 . . . . . . 7 (𝑥 ∈ ℋ → (0 + 𝑥) = 𝑥)
1413eqcomd 2776 . . . . . 6 (𝑥 ∈ ℋ → 𝑥 = (0 + 𝑥))
1512, 14syl 17 . . . . 5 (𝑥𝐵𝑥 = (0 + 𝑥))
16 sh0 28407 . . . . . . 7 (𝐴S → 0𝐴)
171, 16ax-mp 5 . . . . . 6 0𝐴
18 rspceov 6836 . . . . . 6 ((0𝐴𝑥𝐵𝑥 = (0 + 𝑥)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
1917, 18mp3an1 1558 . . . . 5 ((𝑥𝐵𝑥 = (0 + 𝑥)) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
2015, 19mpdan 659 . . . 4 (𝑥𝐵 → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
2111, 20jaoi 837 . . 3 ((𝑥𝐴𝑥𝐵) → ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
22 elun 3902 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
231, 6shseli 28509 . . 3 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑦𝐴𝑧𝐵 𝑥 = (𝑦 + 𝑧))
2421, 22, 233imtr4i 281 . 2 (𝑥 ∈ (𝐴𝐵) → 𝑥 ∈ (𝐴 + 𝐵))
2524ssriv 3754 1 (𝐴𝐵) ⊆ (𝐴 + 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wo 826   = wceq 1630  wcel 2144  wrex 3061  cun 3719  wss 3721  (class class class)co 6792  chil 28110   + cva 28111  0c0v 28115   S csh 28119   + cph 28122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-hilex 28190  ax-hfvadd 28191  ax-hvcom 28192  ax-hvass 28193  ax-hv0cl 28194  ax-hvaddid 28195  ax-hfvmul 28196  ax-hvmulid 28197  ax-hvdistr2 28200  ax-hvmul0 28201
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-ltxr 10280  df-sub 10469  df-neg 10470  df-grpo 27681  df-ablo 27733  df-hvsub 28162  df-sh 28398  df-shs 28501
This theorem is referenced by:  shsval2i  28580  shjshsi  28685  spanuni  28737
  Copyright terms: Public domain W3C validator