Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  shuni Structured version   Visualization version   GIF version

Theorem shuni 28499
 Description: Two subspaces with trivial intersection have a unique decomposition of the elements of the subspace sum. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
shuni.1 (𝜑𝐻S )
shuni.2 (𝜑𝐾S )
shuni.3 (𝜑 → (𝐻𝐾) = 0)
shuni.4 (𝜑𝐴𝐻)
shuni.5 (𝜑𝐵𝐾)
shuni.6 (𝜑𝐶𝐻)
shuni.7 (𝜑𝐷𝐾)
shuni.8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
Assertion
Ref Expression
shuni (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem shuni
StepHypRef Expression
1 shuni.1 . . . . . . 7 (𝜑𝐻S )
2 shuni.4 . . . . . . 7 (𝜑𝐴𝐻)
3 shuni.6 . . . . . . 7 (𝜑𝐶𝐻)
4 shsubcl 28417 . . . . . . 7 ((𝐻S𝐴𝐻𝐶𝐻) → (𝐴 𝐶) ∈ 𝐻)
51, 2, 3, 4syl3anc 1476 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐻)
6 shuni.8 . . . . . . . 8 (𝜑 → (𝐴 + 𝐵) = (𝐶 + 𝐷))
7 shel 28408 . . . . . . . . . 10 ((𝐻S𝐴𝐻) → 𝐴 ∈ ℋ)
81, 2, 7syl2anc 573 . . . . . . . . 9 (𝜑𝐴 ∈ ℋ)
9 shuni.2 . . . . . . . . . 10 (𝜑𝐾S )
10 shuni.5 . . . . . . . . . 10 (𝜑𝐵𝐾)
11 shel 28408 . . . . . . . . . 10 ((𝐾S𝐵𝐾) → 𝐵 ∈ ℋ)
129, 10, 11syl2anc 573 . . . . . . . . 9 (𝜑𝐵 ∈ ℋ)
13 shel 28408 . . . . . . . . . 10 ((𝐻S𝐶𝐻) → 𝐶 ∈ ℋ)
141, 3, 13syl2anc 573 . . . . . . . . 9 (𝜑𝐶 ∈ ℋ)
15 shuni.7 . . . . . . . . . 10 (𝜑𝐷𝐾)
16 shel 28408 . . . . . . . . . 10 ((𝐾S𝐷𝐾) → 𝐷 ∈ ℋ)
179, 15, 16syl2anc 573 . . . . . . . . 9 (𝜑𝐷 ∈ ℋ)
18 hvaddsub4 28275 . . . . . . . . 9 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
198, 12, 14, 17, 18syl22anc 1477 . . . . . . . 8 (𝜑 → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐴 𝐶) = (𝐷 𝐵)))
206, 19mpbid 222 . . . . . . 7 (𝜑 → (𝐴 𝐶) = (𝐷 𝐵))
21 shsubcl 28417 . . . . . . . 8 ((𝐾S𝐷𝐾𝐵𝐾) → (𝐷 𝐵) ∈ 𝐾)
229, 15, 10, 21syl3anc 1476 . . . . . . 7 (𝜑 → (𝐷 𝐵) ∈ 𝐾)
2320, 22eqeltrd 2850 . . . . . 6 (𝜑 → (𝐴 𝐶) ∈ 𝐾)
245, 23elind 3949 . . . . 5 (𝜑 → (𝐴 𝐶) ∈ (𝐻𝐾))
25 shuni.3 . . . . 5 (𝜑 → (𝐻𝐾) = 0)
2624, 25eleqtrd 2852 . . . 4 (𝜑 → (𝐴 𝐶) ∈ 0)
27 elch0 28451 . . . 4 ((𝐴 𝐶) ∈ 0 ↔ (𝐴 𝐶) = 0)
2826, 27sylib 208 . . 3 (𝜑 → (𝐴 𝐶) = 0)
29 hvsubeq0 28265 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = 0𝐴 = 𝐶))
308, 14, 29syl2anc 573 . . 3 (𝜑 → ((𝐴 𝐶) = 0𝐴 = 𝐶))
3128, 30mpbid 222 . 2 (𝜑𝐴 = 𝐶)
3220, 28eqtr3d 2807 . . . 4 (𝜑 → (𝐷 𝐵) = 0)
33 hvsubeq0 28265 . . . . 5 ((𝐷 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3417, 12, 33syl2anc 573 . . . 4 (𝜑 → ((𝐷 𝐵) = 0𝐷 = 𝐵))
3532, 34mpbid 222 . . 3 (𝜑𝐷 = 𝐵)
3635eqcomd 2777 . 2 (𝜑𝐵 = 𝐷)
3731, 36jca 501 1 (𝜑 → (𝐴 = 𝐶𝐵 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ∩ cin 3722  (class class class)co 6793   ℋchil 28116   +ℎ cva 28117  0ℎc0v 28121   −ℎ cmv 28122   Sℋ csh 28125  0ℋc0h 28132 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr1 28205  ax-hvdistr2 28206  ax-hvmul0 28207 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-hvsub 28168  df-sh 28404  df-ch0 28450 This theorem is referenced by:  chocunii  28500  pjhthmo  28501  chscllem3  28838
 Copyright terms: Public domain W3C validator