![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shsval3i | Structured version Visualization version GIF version |
Description: An alternate way to express subspace sum. (Contributed by NM, 25-Nov-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shlesb1.1 | ⊢ 𝐴 ∈ Sℋ |
shlesb1.2 | ⊢ 𝐵 ∈ Sℋ |
Ref | Expression |
---|---|
shsval3i | ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shlesb1.1 | . . 3 ⊢ 𝐴 ∈ Sℋ | |
2 | shlesb1.2 | . . 3 ⊢ 𝐵 ∈ Sℋ | |
3 | 1, 2 | shsval2i 28547 | . 2 ⊢ (𝐴 +ℋ 𝐵) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
4 | 1 | shssii 28371 | . . . 4 ⊢ 𝐴 ⊆ ℋ |
5 | 2 | shssii 28371 | . . . 4 ⊢ 𝐵 ⊆ ℋ |
6 | 4, 5 | unssi 3923 | . . 3 ⊢ (𝐴 ∪ 𝐵) ⊆ ℋ |
7 | spanval 28493 | . . 3 ⊢ ((𝐴 ∪ 𝐵) ⊆ ℋ → (span‘(𝐴 ∪ 𝐵)) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥}) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ (span‘(𝐴 ∪ 𝐵)) = ∩ {𝑥 ∈ Sℋ ∣ (𝐴 ∪ 𝐵) ⊆ 𝑥} |
9 | 3, 8 | eqtr4i 2777 | 1 ⊢ (𝐴 +ℋ 𝐵) = (span‘(𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1624 ∈ wcel 2131 {crab 3046 ∪ cun 3705 ⊆ wss 3707 ∩ cint 4619 ‘cfv 6041 (class class class)co 6805 ℋchil 28077 Sℋ csh 28086 +ℋ cph 28089 spancspn 28090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-pre-sup 10198 ax-addf 10199 ax-mulf 10200 ax-hilex 28157 ax-hfvadd 28158 ax-hvcom 28159 ax-hvass 28160 ax-hv0cl 28161 ax-hvaddid 28162 ax-hfvmul 28163 ax-hvmulid 28164 ax-hvmulass 28165 ax-hvdistr1 28166 ax-hvdistr2 28167 ax-hvmul0 28168 ax-hfi 28237 ax-his1 28240 ax-his2 28241 ax-his3 28242 ax-his4 28243 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-map 8017 df-pm 8018 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8505 df-inf 8506 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-n0 11477 df-z 11562 df-uz 11872 df-q 11974 df-rp 12018 df-xneg 12131 df-xadd 12132 df-xmul 12133 df-icc 12367 df-seq 12988 df-exp 13047 df-cj 14030 df-re 14031 df-im 14032 df-sqrt 14166 df-abs 14167 df-topgen 16298 df-psmet 19932 df-xmet 19933 df-met 19934 df-bl 19935 df-mopn 19936 df-top 20893 df-topon 20910 df-bases 20944 df-lm 21227 df-haus 21313 df-grpo 27648 df-gid 27649 df-ginv 27650 df-gdiv 27651 df-ablo 27700 df-vc 27715 df-nv 27748 df-va 27751 df-ba 27752 df-sm 27753 df-0v 27754 df-vs 27755 df-nmcv 27756 df-ims 27757 df-hnorm 28126 df-hvsub 28129 df-hlim 28130 df-sh 28365 df-ch 28379 df-ch0 28411 df-shs 28468 df-span 28469 |
This theorem is referenced by: shs0i 28609 |
Copyright terms: Public domain | W3C validator |