HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsupunss Structured version   Visualization version   GIF version

Theorem shsupunss 28435
Description: The union of a set of subspaces is smaller than its supremum. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shsupunss (𝐴S 𝐴 ⊆ (span‘ 𝐴))

Proof of Theorem shsupunss
StepHypRef Expression
1 shsspwh 28333 . . . . 5 S ⊆ 𝒫 ℋ
2 sstr 3717 . . . . 5 ((𝐴SS ⊆ 𝒫 ℋ) → 𝐴 ⊆ 𝒫 ℋ)
31, 2mpan2 709 . . . 4 (𝐴S𝐴 ⊆ 𝒫 ℋ)
43unissd 4570 . . 3 (𝐴S 𝐴 𝒫 ℋ)
5 unipw 5023 . . 3 𝒫 ℋ = ℋ
64, 5syl6sseq 3757 . 2 (𝐴S 𝐴 ⊆ ℋ)
7 spanss2 28434 . 2 ( 𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘ 𝐴))
86, 7syl 17 1 (𝐴S 𝐴 ⊆ (span‘ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3680  𝒫 cpw 4266   cuni 4544  cfv 6001  chil 28006   S csh 28015  spancspn 28019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-i2m1 10117  ax-1ne0 10118  ax-rrecex 10121  ax-cnre 10122  ax-hilex 28086  ax-hfvadd 28087  ax-hv0cl 28090  ax-hfvmul 28092
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-map 7976  df-nn 11134  df-hlim 28059  df-sh 28294  df-ch 28308  df-span 28398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator