HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsel Structured version   Visualization version   GIF version

Theorem shsel 28513
Description: Membership in the subspace sum of two Hilbert subspaces. (Contributed by NM, 14-Dec-2004.) (Revised by Mario Carneiro, 29-Jan-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shsel ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem shsel
StepHypRef Expression
1 shsval 28511 . . 3 ((𝐴S𝐵S ) → (𝐴 + 𝐵) = ( + “ (𝐴 × 𝐵)))
21eleq2d 2836 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ 𝐶 ∈ ( + “ (𝐴 × 𝐵))))
3 ax-hfvadd 28197 . . . 4 + :( ℋ × ℋ)⟶ ℋ
4 ffn 6185 . . . 4 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
53, 4ax-mp 5 . . 3 + Fn ( ℋ × ℋ)
6 shss 28407 . . . 4 (𝐴S𝐴 ⊆ ℋ)
7 shss 28407 . . . 4 (𝐵S𝐵 ⊆ ℋ)
8 xpss12 5264 . . . 4 ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ))
96, 7, 8syl2an 583 . . 3 ((𝐴S𝐵S ) → (𝐴 × 𝐵) ⊆ ( ℋ × ℋ))
10 ovelimab 6959 . . 3 (( + Fn ( ℋ × ℋ) ∧ (𝐴 × 𝐵) ⊆ ( ℋ × ℋ)) → (𝐶 ∈ ( + “ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
115, 9, 10sylancr 575 . 2 ((𝐴S𝐵S ) → (𝐶 ∈ ( + “ (𝐴 × 𝐵)) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
122, 11bitrd 268 1 ((𝐴S𝐵S ) → (𝐶 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wrex 3062  wss 3723   × cxp 5247  cima 5252   Fn wfn 6026  wf 6027  (class class class)co 6793  chil 28116   + cva 28117   S csh 28125   + cph 28128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvdistr2 28206  ax-hvmul0 28207
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-ltxr 10281  df-sub 10470  df-neg 10471  df-grpo 27687  df-ablo 27739  df-hvsub 28168  df-sh 28404  df-shs 28507
This theorem is referenced by:  shsel3  28514  shseli  28515  shscom  28518  shsva  28519  shless  28558  pjhth  28592  pjhtheu  28593  pjpreeq  28597  pjpjpre  28618  chscllem4  28839  sumdmdii  29614  sumdmdlem  29617
  Copyright terms: Public domain W3C validator