Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  shorth Structured version   Visualization version   GIF version

Theorem shorth 28484
 Description: Members of orthogonal subspaces are orthogonal. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shorth (𝐻S → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ·ih 𝐵) = 0)))

Proof of Theorem shorth
StepHypRef Expression
1 ssel 3738 . . . . . 6 (𝐺 ⊆ (⊥‘𝐻) → (𝐴𝐺𝐴 ∈ (⊥‘𝐻)))
21anim1d 589 . . . . 5 (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵𝐻)))
32imp 444 . . . 4 ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴𝐺𝐵𝐻)) → (𝐴 ∈ (⊥‘𝐻) ∧ 𝐵𝐻))
43ancomd 466 . . 3 ((𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴𝐺𝐵𝐻)) → (𝐵𝐻𝐴 ∈ (⊥‘𝐻)))
5 shocorth 28481 . . . . 5 (𝐻S → ((𝐵𝐻𝐴 ∈ (⊥‘𝐻)) → (𝐵 ·ih 𝐴) = 0))
65imp 444 . . . 4 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → (𝐵 ·ih 𝐴) = 0)
7 shss 28397 . . . . . . . 8 (𝐻S𝐻 ⊆ ℋ)
87sseld 3743 . . . . . . 7 (𝐻S → (𝐵𝐻𝐵 ∈ ℋ))
9 shocss 28475 . . . . . . . 8 (𝐻S → (⊥‘𝐻) ⊆ ℋ)
109sseld 3743 . . . . . . 7 (𝐻S → (𝐴 ∈ (⊥‘𝐻) → 𝐴 ∈ ℋ))
118, 10anim12d 587 . . . . . 6 (𝐻S → ((𝐵𝐻𝐴 ∈ (⊥‘𝐻)) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ)))
1211imp 444 . . . . 5 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → (𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ))
13 orthcom 28295 . . . . 5 ((𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0))
1412, 13syl 17 . . . 4 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → ((𝐵 ·ih 𝐴) = 0 ↔ (𝐴 ·ih 𝐵) = 0))
156, 14mpbid 222 . . 3 ((𝐻S ∧ (𝐵𝐻𝐴 ∈ (⊥‘𝐻))) → (𝐴 ·ih 𝐵) = 0)
164, 15sylan2 492 . 2 ((𝐻S ∧ (𝐺 ⊆ (⊥‘𝐻) ∧ (𝐴𝐺𝐵𝐻))) → (𝐴 ·ih 𝐵) = 0)
1716exp32 632 1 (𝐻S → (𝐺 ⊆ (⊥‘𝐻) → ((𝐴𝐺𝐵𝐻) → (𝐴 ·ih 𝐵) = 0)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ⊆ wss 3715  ‘cfv 6049  (class class class)co 6814  0cc0 10148   ℋchil 28106   ·ih csp 28109   Sℋ csh 28115  ⊥cort 28117 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-hilex 28186  ax-hfvadd 28187  ax-hv0cl 28190  ax-hfvmul 28192  ax-hvmul0 28197  ax-hfi 28266  ax-his1 28269  ax-his2 28270  ax-his3 28271 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291  df-cj 14058  df-re 14059  df-im 14060  df-sh 28394  df-oc 28439 This theorem is referenced by:  pjoi0  28906
 Copyright terms: Public domain W3C validator