HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shocel Structured version   Visualization version   GIF version

Theorem shocel 28475
Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shocel (𝐻S → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Distinct variable groups:   𝑥,𝐻   𝑥,𝐴

Proof of Theorem shocel
StepHypRef Expression
1 shss 28401 . 2 (𝐻S𝐻 ⊆ ℋ)
2 ocel 28474 . 2 (𝐻 ⊆ ℋ → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
31, 2syl 17 1 (𝐻S → (𝐴 ∈ (⊥‘𝐻) ↔ (𝐴 ∈ ℋ ∧ ∀𝑥𝐻 (𝐴 ·ih 𝑥) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wral 3060  wss 3721  cfv 6031  (class class class)co 6792  0cc0 10137  chil 28110   ·ih csp 28113   S csh 28119  cort 28121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034  ax-hilex 28190
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-sh 28398  df-oc 28443
This theorem is referenced by:  ocin  28489  choc0  28519  choc1  28520  pjhthlem2  28585  pjclem4  29392  pj3si  29400
  Copyright terms: Public domain W3C validator