![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shjval | Structured version Visualization version GIF version |
Description: Value of join in Sℋ. (Contributed by NM, 9-Aug-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shjval | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss 28397 | . 2 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ ℋ) | |
2 | shss 28397 | . 2 ⊢ (𝐵 ∈ Sℋ → 𝐵 ⊆ ℋ) | |
3 | sshjval 28539 | . 2 ⊢ ((𝐴 ⊆ ℋ ∧ 𝐵 ⊆ ℋ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) | |
4 | 1, 2, 3 | syl2an 495 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∨ℋ 𝐵) = (⊥‘(⊥‘(𝐴 ∪ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∪ cun 3713 ⊆ wss 3715 ‘cfv 6049 (class class class)co 6814 ℋchil 28106 Sℋ csh 28115 ⊥cort 28117 ∨ℋ chj 28120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-hilex 28186 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-sh 28394 df-chj 28499 |
This theorem is referenced by: chjval 28541 shjcom 28547 shlej1 28549 shunssji 28558 shlub 28603 shjshsi 28681 |
Copyright terms: Public domain | W3C validator |