HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shintcli Structured version   Visualization version   GIF version

Theorem shintcli 28316
Description: Closure of intersection of a nonempty subset of S. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.)
Hypothesis
Ref Expression
shintcl.1 (𝐴S𝐴 ≠ ∅)
Assertion
Ref Expression
shintcli 𝐴S

Proof of Theorem shintcli
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shintcl.1 . . . . 5 (𝐴S𝐴 ≠ ∅)
21simpri 477 . . . 4 𝐴 ≠ ∅
3 n0 3964 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑧 𝑧𝐴)
4 intss1 4524 . . . . . . 7 (𝑧𝐴 𝐴𝑧)
51simpli 473 . . . . . . . . 9 𝐴S
65sseli 3632 . . . . . . . 8 (𝑧𝐴𝑧S )
7 shss 28195 . . . . . . . 8 (𝑧S𝑧 ⊆ ℋ)
86, 7syl 17 . . . . . . 7 (𝑧𝐴𝑧 ⊆ ℋ)
94, 8sstrd 3646 . . . . . 6 (𝑧𝐴 𝐴 ⊆ ℋ)
109exlimiv 1898 . . . . 5 (∃𝑧 𝑧𝐴 𝐴 ⊆ ℋ)
113, 10sylbi 207 . . . 4 (𝐴 ≠ ∅ → 𝐴 ⊆ ℋ)
122, 11ax-mp 5 . . 3 𝐴 ⊆ ℋ
13 ax-hv0cl 27988 . . . . . 6 0 ∈ ℋ
1413elexi 3244 . . . . 5 0 ∈ V
1514elint2 4514 . . . 4 (0 𝐴 ↔ ∀𝑧𝐴 0𝑧)
16 sh0 28201 . . . . 5 (𝑧S → 0𝑧)
176, 16syl 17 . . . 4 (𝑧𝐴 → 0𝑧)
1815, 17mprgbir 2956 . . 3 0 𝐴
1912, 18pm3.2i 470 . 2 ( 𝐴 ⊆ ℋ ∧ 0 𝐴)
20 elinti 4517 . . . . . . . . 9 (𝑥 𝐴 → (𝑧𝐴𝑥𝑧))
2120com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑥 𝐴𝑥𝑧))
22 elinti 4517 . . . . . . . . 9 (𝑦 𝐴 → (𝑧𝐴𝑦𝑧))
2322com12 32 . . . . . . . 8 (𝑧𝐴 → (𝑦 𝐴𝑦𝑧))
24 shaddcl 28202 . . . . . . . . . 10 ((𝑧S𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
256, 24syl3an1 1399 . . . . . . . . 9 ((𝑧𝐴𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧)
26253expib 1287 . . . . . . . 8 (𝑧𝐴 → ((𝑥𝑧𝑦𝑧) → (𝑥 + 𝑦) ∈ 𝑧))
2721, 23, 26syl2and 499 . . . . . . 7 (𝑧𝐴 → ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝑧))
2827com12 32 . . . . . 6 ((𝑥 𝐴𝑦 𝐴) → (𝑧𝐴 → (𝑥 + 𝑦) ∈ 𝑧))
2928ralrimiv 2994 . . . . 5 ((𝑥 𝐴𝑦 𝐴) → ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
30 ovex 6718 . . . . . 6 (𝑥 + 𝑦) ∈ V
3130elint2 4514 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 + 𝑦) ∈ 𝑧)
3229, 31sylibr 224 . . . 4 ((𝑥 𝐴𝑦 𝐴) → (𝑥 + 𝑦) ∈ 𝐴)
3332rgen2a 3006 . . 3 𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴
34 shmulcl 28203 . . . . . . . . . 10 ((𝑧S𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
356, 34syl3an1 1399 . . . . . . . . 9 ((𝑧𝐴𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧)
36353expib 1287 . . . . . . . 8 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦𝑧) → (𝑥 · 𝑦) ∈ 𝑧))
3723, 36sylan2d 498 . . . . . . 7 (𝑧𝐴 → ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝑧))
3837com12 32 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑧𝐴 → (𝑥 · 𝑦) ∈ 𝑧))
3938ralrimiv 2994 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
40 ovex 6718 . . . . . 6 (𝑥 · 𝑦) ∈ V
4140elint2 4514 . . . . 5 ((𝑥 · 𝑦) ∈ 𝐴 ↔ ∀𝑧𝐴 (𝑥 · 𝑦) ∈ 𝑧)
4239, 41sylibr 224 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 𝐴) → (𝑥 · 𝑦) ∈ 𝐴)
4342rgen2 3004 . . 3 𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴
4433, 43pm3.2i 470 . 2 (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)
45 issh2 28194 . 2 ( 𝐴S ↔ (( 𝐴 ⊆ ℋ ∧ 0 𝐴) ∧ (∀𝑥 𝐴𝑦 𝐴(𝑥 + 𝑦) ∈ 𝐴 ∧ ∀𝑥 ∈ ℂ ∀𝑦 𝐴(𝑥 · 𝑦) ∈ 𝐴)))
4619, 44, 45mpbir2an 975 1 𝐴S
Colors of variables: wff setvar class
Syntax hints:  wa 383  wex 1744  wcel 2030  wne 2823  wral 2941  wss 3607  c0 3948   cint 4507  (class class class)co 6690  cc 9972  chil 27904   + cva 27905   · csm 27906  0c0v 27909   S csh 27913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936  ax-hilex 27984  ax-hfvadd 27985  ax-hv0cl 27988  ax-hfvmul 27990
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-ov 6693  df-sh 28192
This theorem is referenced by:  shintcl  28317  chintcli  28318  shincli  28349
  Copyright terms: Public domain W3C validator