![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shincl | Structured version Visualization version GIF version |
Description: Closure of intersection of two subspaces. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shincl | ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1 3951 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → (𝐴 ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵)) | |
2 | 1 | eleq1d 2825 | . 2 ⊢ (𝐴 = if(𝐴 ∈ Sℋ , 𝐴, ℋ) → ((𝐴 ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ )) |
3 | ineq2 3952 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) = (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ))) | |
4 | 3 | eleq1d 2825 | . 2 ⊢ (𝐵 = if(𝐵 ∈ Sℋ , 𝐵, ℋ) → ((if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ 𝐵) ∈ Sℋ ↔ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ )) |
5 | helsh 28433 | . . . 4 ⊢ ℋ ∈ Sℋ | |
6 | 5 | elimel 4295 | . . 3 ⊢ if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∈ Sℋ |
7 | 5 | elimel 4295 | . . 3 ⊢ if(𝐵 ∈ Sℋ , 𝐵, ℋ) ∈ Sℋ |
8 | 6, 7 | shincli 28552 | . 2 ⊢ (if(𝐴 ∈ Sℋ , 𝐴, ℋ) ∩ if(𝐵 ∈ Sℋ , 𝐵, ℋ)) ∈ Sℋ |
9 | 2, 4, 8 | dedth2h 4285 | 1 ⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ Sℋ ) → (𝐴 ∩ 𝐵) ∈ Sℋ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∩ cin 3715 ifcif 4231 ℋchil 28107 Sℋ csh 28116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-i2m1 10217 ax-1ne0 10218 ax-rrecex 10221 ax-cnre 10222 ax-hilex 28187 ax-hfvadd 28188 ax-hv0cl 28191 ax-hfvmul 28193 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-map 8028 df-nn 11234 df-hlim 28160 df-sh 28395 df-ch 28409 |
This theorem is referenced by: orthin 28636 sumdmdii 29605 |
Copyright terms: Public domain | W3C validator |