MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfn Structured version   Visualization version   GIF version

Theorem shftfn 13794
Description: Functionality and domain of a sequence shifted by 𝐴. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfn ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem shftfn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5236 . . . . 5 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
21a1i 11 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3 fnfun 5976 . . . . . 6 (𝐹 Fn 𝐵 → Fun 𝐹)
43adantr 481 . . . . 5 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun 𝐹)
5 funmo 5892 . . . . . . 7 (Fun 𝐹 → ∃*𝑤(𝑧𝐴)𝐹𝑤)
6 vex 3198 . . . . . . . . . 10 𝑧 ∈ V
7 vex 3198 . . . . . . . . . 10 𝑤 ∈ V
8 eleq1 2687 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥 ∈ ℂ ↔ 𝑧 ∈ ℂ))
9 oveq1 6642 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥𝐴) = (𝑧𝐴))
109breq1d 4654 . . . . . . . . . . 11 (𝑥 = 𝑧 → ((𝑥𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑦))
118, 10anbi12d 746 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦)))
12 breq2 4648 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑧𝐴)𝐹𝑦 ↔ (𝑧𝐴)𝐹𝑤))
1312anbi2d 739 . . . . . . . . . 10 (𝑦 = 𝑤 → ((𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑦) ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤)))
14 eqid 2620 . . . . . . . . . 10 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
156, 7, 11, 13, 14brab 4988 . . . . . . . . 9 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 ↔ (𝑧 ∈ ℂ ∧ (𝑧𝐴)𝐹𝑤))
1615simprbi 480 . . . . . . . 8 (𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤 → (𝑧𝐴)𝐹𝑤)
1716moimi 2518 . . . . . . 7 (∃*𝑤(𝑧𝐴)𝐹𝑤 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
185, 17syl 17 . . . . . 6 (Fun 𝐹 → ∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
1918alrimiv 1853 . . . . 5 (Fun 𝐹 → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
204, 19syl 17 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤)
21 dffun6 5891 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∧ ∀𝑧∃*𝑤 𝑧{⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}𝑤))
222, 20, 21sylanbrc 697 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
23 shftfval.1 . . . . . 6 𝐹 ∈ V
2423shftfval 13791 . . . . 5 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2524adantl 482 . . . 4 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
2625funeqd 5898 . . 3 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (Fun (𝐹 shift 𝐴) ↔ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}))
2722, 26mpbird 247 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → Fun (𝐹 shift 𝐴))
2823shftdm 13792 . . 3 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
29 fndm 5978 . . . . 5 (𝐹 Fn 𝐵 → dom 𝐹 = 𝐵)
3029eleq2d 2685 . . . 4 (𝐹 Fn 𝐵 → ((𝑥𝐴) ∈ dom 𝐹 ↔ (𝑥𝐴) ∈ 𝐵))
3130rabbidv 3184 . . 3 (𝐹 Fn 𝐵 → {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
3228, 31sylan9eqr 2676 . 2 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
33 df-fn 5879 . 2 ((𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵} ↔ (Fun (𝐹 shift 𝐴) ∧ dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵}))
3427, 32, 33sylanbrc 697 1 ((𝐹 Fn 𝐵𝐴 ∈ ℂ) → (𝐹 shift 𝐴) Fn {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1479   = wceq 1481  wcel 1988  ∃*wmo 2469  {crab 2913  Vcvv 3195   class class class wbr 4644  {copab 4703  dom cdm 5104  Rel wrel 5109  Fun wfun 5870   Fn wfn 5871  (class class class)co 6635  cc 9919  cmin 10251   shift cshi 13787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-po 5025  df-so 5026  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-ltxr 10064  df-sub 10253  df-shft 13788
This theorem is referenced by:  shftf  13800  seqshft  13806  uzmptshftfval  38365
  Copyright terms: Public domain W3C validator