![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shex | Structured version Visualization version GIF version |
Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shex | ⊢ Sℋ ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 27984 | . . 3 ⊢ ℋ ∈ V | |
2 | 1 | pwex 4878 | . 2 ⊢ 𝒫 ℋ ∈ V |
3 | shss 28195 | . . . 4 ⊢ (𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ) | |
4 | selpw 4198 | . . . 4 ⊢ (𝑥 ∈ 𝒫 ℋ ↔ 𝑥 ⊆ ℋ) | |
5 | 3, 4 | sylibr 224 | . . 3 ⊢ (𝑥 ∈ Sℋ → 𝑥 ∈ 𝒫 ℋ) |
6 | 5 | ssriv 3640 | . 2 ⊢ Sℋ ⊆ 𝒫 ℋ |
7 | 2, 6 | ssexi 4836 | 1 ⊢ Sℋ ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 ℋchil 27904 Sℋ csh 27913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-pow 4873 ax-hilex 27984 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-sh 28192 |
This theorem is referenced by: chex 28211 |
Copyright terms: Public domain | W3C validator |